8 research outputs found

    SPOT: A strategic life-cycle-assessment-based methodology and tool for cosmetic product eco-design

    Get PDF
    ABSTRACT: The cosmetics industry is facing growing pressure to offer more sustainable products, which can be tackled by applying eco-design. This article aims to present the Sustainable Product Optimization Tool (SPOT) methodology developed by L’OrĂ©al to eco-design its cosmetic products and the strategies adopted for its implementation while presenting the challenges encountered along the way. The SPOT methodology is based on the life cycle assessment (LCA) of a finished product and its subsystems (formula, packaging, manufacturing and distribution). Several environmental indicators are assessed, normalized and weighted based on the planetary boundaries concept, and then aggregated into a single footprint. A product sustainability index (a single rating, easy to interpret) is then obtained by merging the environmental product rating derived from the single environmental footprint with the social rating (not covered here). The use of the SPOT method is shown by two case studies. The implementation of SPOT, based on specific strategic and managerial measures (corporate and brand targets, Key Performance Indicators, and financial incentives) is discussed. These measures have enabled L’OrĂ©al to have 97% of their products stated as eco-designed in 2022. SPOT shows how eco-design can be implemented on a large scale without compromising scientific robustness. Eco-design tools must strike the right balance between the complexity of the LCA and the ease of interpretation of the results, and have a robust implementation plan to ensure a successful eco-design strategy

    Vers un futur circulaire Ă  faible empreinte carbone: modĂ©lisation et optimisation prospectives des impacts et des flux d’aluminium

    No full text
    RÉSUMÉ: Face Ă  l’urgence climatique, l’industrie de l’aluminium doit trouver un moyen de rĂ©duire ses impacts environnementaux tout en continuant Ă  rĂ©pondre Ă  une demande qui sera vraisemblablement croissante. Une transformation vers une Ă©conomie circulaire, notamment Ă  l’aide d’une amĂ©lioration du recyclage, a le potentiel de rĂ©concilier ces deux objectifs qui peuvent sembler contradictoires. Cependant, le recyclage de l’aluminium est limitĂ© par la contamination inter-alliage lors de la refonte. Cette contamination mĂšne Ă  un recyclage en cascade oĂč une perte de qualitĂ© est subie Ă  chaque cycle. Cela laisse prĂ©sager que des surplus d’aluminium recyclĂ© trop contaminĂ©s pour ĂȘtre utilisĂ©s seront gĂ©nĂ©rĂ©s dans les prochaines annĂ©es. L’ajout d’aluminium primaire Ă  ce mĂ©lange permet aux recycleurs de compenser la perte de qualitĂ©, mais limite les gains environnementaux du recyclage et du systĂšme global, en plus de limiter sa circularitĂ©. Il est donc nĂ©cessaire de connaitre prĂ©cisĂ©ment les flux actuels et futurs d’aluminium et d’en Ă©valuer les impacts environnementaux afin de mener une transformation circulaire de l’industrie. Les outils disponibles pour y arriver sont : l’analyse du cycle de vie (ACV) pour quantifier les impacts environnementaux de la production d’aluminium et ses alliages, l’analyse de flux de matiĂšre (AFM) pour comprendre la dynamique des flux et stocks, et ainsi quantifier la demande en aluminium et les stocks disponibles pour le recyclage, la modĂ©lisation par scĂ©nario pour mener des travaux prospectifs et la recherche opĂ©rationnelle pour optimiser un systĂšme. Une revue critique de littĂ©rature a permis d’identifier les principales limites de ces outils qui devront ĂȘtre surmontĂ©es. PremiĂšrement, l’ACV n’est pas adaptĂ©e pour l’identification des impacts futurs ni pour l’identification des meilleures voies de rĂ©ductions des impacts du systĂšme. DeuxiĂšmement, les AFM existantes sur l’aluminium sont soit trop agrĂ©gĂ©es pour Ă©valuer les flux et stocks au niveau de l'alliage, soit trop spĂ©cifiques Ă  un seul secteur, ce qui ne permet pas d’analyser l’ensemble de l'industrie. TroisiĂšmement, il a Ă©tĂ© montrĂ© que la modĂ©lisation par scĂ©nario est grandement utilisĂ©e pour mener des travaux prospectifs, mais que ceux-ci, par leur nature cas par cas, rend leur application et leur comparaison trĂšs difficile. Finalement, bien que l’optimisation soit au coeur de plusieurs dĂ©finitions de l’économie circulaire, la recherche opĂ©rationnelle n’est que trĂšs rarement utilisĂ©e dans ce domaine. Une combinaison de cette discipline avec l’ACV et l’AFM assurerait des modĂ©lisations plus rĂ©alistes et pertinentes afin d’identifier les meilleures pistes d’amĂ©lioration selon les contraintes spĂ©cifiques de l’industrie. L'objectif gĂ©nĂ©ral de cette thĂšse est de dĂ©velopper un modĂšle caractĂ©risant et optimisant de maniĂšre prospective les flux de production et de consommation d’aluminium afin d’informer les acteurs de ce secteur industriel sur les leviers d’action pour minimiser les impacts environnementaux dans une perspective d’économie circulaire. Quatre objectifs spĂ©cifiques sont Ă©laborĂ©s en ce sens. Le premier est d’évaluer les modĂšles prospectifs existants et d’identifier le plus appropriĂ© pour le combiner respectivement Ă  l’ACV et Ă  l’AFM dynamique. Le deuxiĂšme est de quantifier les impacts environnementaux prospectifs de la production d’aluminium primaire Ă  l’aide de scĂ©narios cohĂ©rents selon l’évolution des technologies de production et des mixes Ă©lectriques. Le troisiĂšme est de quantifier les stocks et flux prospectifs d’aluminium et ses alliages selon une approche sectorielle Ă  l’aide de scĂ©narios cohĂ©rents. Le quatriĂšme et dernier est de dĂ©velopper un modĂšle d’optimisation identifiant le tri des flux d’aluminium en fin de vie Ă  effectuer afin de minimiser les impacts environnementaux tout en respectant la demande et selon une perspective systĂ©mique. Dans un premier temps, Ă  la suite d’une Ă©valuation des diffĂ©rentes familles de scĂ©narios prospectifs existantes, la sĂ©lection du cadre des Shared Socioeconomic Pathways (SSP) a Ă©tĂ© faite. Les SSP sont des scĂ©narios basĂ©s sur cinq narratives diffĂ©rentes par leur Ă©volution socio-Ă©conomique. Ce cadre permet l’évaluation des trajectoires d’émissions de gaz Ă  effet de serre des diffĂ©rents scĂ©narios en plus de servir de base Ă  diffĂ©rentes Ă©tudes environnementales. Dans un second temps, une combinaison de la mĂ©thodologie de l’ACV et du cadre prospectif SSP a Ă©tĂ© faite, menant Ă  la rĂ©daction du premier article. Les rĂ©sultats projettent une intensitĂ© carbone moyenne mondiale comprise entre 8,6 et 18,0 kg CO2 eq/kg d’aluminium primaire en 2100 comparativement Ă  une valeur actuelle de 18.3 kg CO2 eq/kg d’aluminium. Ces valeurs sont encore plus faibles selon les scĂ©narios d'attĂ©nuation assumant une plus grande et rapide dĂ©carbonisation des mixes Ă©lectriques. Une analyse de contribution a montrĂ© qu’à l’échelle globale, la dĂ©carbonisation des mixes Ă©lectriques a le plus grand potentiel de rĂ©duction d’émissions de gaz Ă  effet de serre, alors que l’adoption d’un procĂ©dĂ© d’électrolyse Ă  anode inerte n’entraĂźnerait que des rĂ©ductions marginales. Dans un troisiĂšme temps, une AFM dynamique de l’aluminium et ses alliages a Ă©tĂ© rĂ©alisĂ©e afin de quantifier l’accumulation de stocks, la demande en aluminium et les flux Ă  recycler des prochaines dĂ©cennies. Cela a Ă©tĂ© fait en accord avec le cadre et les rĂ©sultats des SSP et a menĂ© Ă  la rĂ©daction du deuxiĂšme article. Les rĂ©sultats ne montrent aucune saturation du stock mondial par habitant avant 2100, atteignant une fourchette comprise entre 200 et 400 kg par habitant selon le scĂ©nario socio-Ă©conomique. Pour le scĂ©nario de statu quo, la demande annuelle mondiale s'Ă©lĂšve Ă  100 Mt en 2050 et culmine Ă  130 Mt en 2090, montrant une saturation du stock total. Aucune inadĂ©quation majeure entre la demande par alliage et les flux en fin de vie d'aluminium n'est observĂ©e. Cela signifie qu'avec un dĂ©mantĂšlement et un tri appropriĂ©, les changements dans la demande d'alliages ne limiteraient pas la mise en oeuvre d'une industrie de l'aluminium circulaire. Finalement, un modĂšle d'optimisation du tri des flux d'aluminium en fin de vie ayant pour but de minimiser les impacts environnementaux de l'industrie a Ă©tĂ© dĂ©veloppĂ©, intĂ©grant les rĂ©sultats de l’ACV et de l’AFM. Cela a menĂ© Ă  la rĂ©daction du troisiĂšme article. Un meilleur tri permet de rĂ©duire de 30% les impacts du systĂšme en rĂ©duisant la contamination inter-alliage ainsi que la demande en aluminium primaire. Une amĂ©lioration de la circularitĂ© par l’augmentation du recyclage mĂšne automatiquement Ă  la rĂ©duction des impacts environnementaux pour le secteur de l’aluminium. Des analyses de sensibilitĂ© ont montrĂ© qu’une augmentation du taux de collecte et du dĂ©mantĂšlement a le potentiel de rĂ©duire davantage les impacts du systĂšme. Les rĂ©sultats ont aussi permis d'identifier diffĂ©rentes boucles fermĂ©es qu'il convient de promouvoir en prioritĂ© dans des secteurs spĂ©cifiques, tels que celui de la construction et des canettes d’aluminium. Les principales limites de ce projet de recherche sont que les scĂ©narios dĂ©veloppĂ©s ne prennent pas en compte de potentiels changements disruptifs sociĂ©taux ou technologiques, que la dĂ©sagrĂ©gation gĂ©ographique en cinq rĂ©gions mondiales induit une certaine hĂ©tĂ©rogĂ©nĂ©itĂ© dans les rĂ©gions modĂ©lisĂ©es, que le modĂšle d’optimisation ne couvre que les aspects environnementaux et que les Ă©tapes intermĂ©diaires de production et de transformation d’aluminium en produits finis ont Ă©tĂ© exclues des pĂ©rimĂštres d’étude. Alors, que l’économie circulaire a un fort potentiel de changements, les outils utilisĂ©s doivent ĂȘtre adaptĂ©s et amĂ©liorĂ©s pour mener cette transformation. Cette thĂšse s’inscrit directement dans cette voie.----------ABSTRACT: Facing a global climate crisis, the aluminum industry needs to find a way to reduce its environmental impacts while continuing to supply a demand that is likely to increase. A transformation towards a circular economy, through improved recycling, has the potential to reconcile these two objectives which may seem contradictory. Aluminum recycling is limited by inter-alloy contamination when several different alloys are mixed during the remelting process. This contamination leads to cascade recycling where a loss of quality occurs at each cycle. This suggests that a surplus of recycled aluminum, too contaminated to be used, will be generated in the coming years. The addition of primary aluminum to this mixture allows recyclers to compensate for this loss of quality but limits the environmental gains of recycling and of the overall system in addition to limiting its circularity. It is therefore necessary to precisely know the current and future flows of aluminum and to assess their environmental impacts in order to lead a circular transformation of the industry. The tools available to achieve this are: life cycle assessment (LCA) to quantify the environmental impacts of the production of aluminum and its alloys, material flow analysis (MFA) to understand the dynamics of flows and stocks and thus quantify the demand for aluminum and the stocks available for recycling, and scenario modeling for prospective works and operational research to optimize a system. A critical literature review has identified the main limitations of these tools that will need to be overcome. First, LCA is not suitable for identifying future impacts nor for identifying the best path to reduce the impacts of the system. Second, existing MFAs on aluminum are either too aggregated to assess flows and stocks at the alloy level, or too specific to a single sector, making it impossible to assess the entire industry. Third, it has been shown that scenario modeling is widely used to conduct prospective work, but the case-by-case nature makes its application and comparison very difficult. Finally, although optimization is part of several definitions of circular economy, operational research is only very rarely used in this field. A combination of this discipline with LCA and MFA would ensure more realistic and relevant modeling in order to identify the best levers of improvement according to the specific constraints of the industry. The general objective of this thesis is to develop a model characterizing and optimizing the flows of production and consumption of aluminum in a prospective manner in order to inform the actors of this industry on the levers of action minimizing the environmental impacts in a circular perspective. Four specific objectives were developed in this regard. The first is to evaluate the existing prospective models and identify the most appropriate to combine with LCA and dynamic MFA. The second is to quantify the prospective environmental impacts of the production of primary aluminum using consistent scenarios according to the evolution of production technologies and electricity mixes. The third is to quantify the prospective stocks and flows of aluminum and its alloys following a sectoral approach using consistent scenarios. The fourth and last is to develop an optimization model applied to the sorting of end-of-life aluminum flows in order to minimize environmental impacts with a systemic perspective. First, based on the evaluation of the different families of existing prospective scenarios, the Shared Socioeconomic Pathways (SSP) framework was selected. The SSPs are scenarios based on five narratives which differ by their socio-economic evolution. This framework allows the evaluation of greenhouse gas emission trajectories of each scenario in addition to serve as a framework for various environmental studies. Second, a combination of the LCA methodology and the SSP prospective framework was made leading to the writing of the first article. The results project a global average carbon intensity of primary aluminum production between 8.6 and 18.0 kg CO2 eq/kg in 2100 in comparison to a current value of 18.3 kg CO2 eq/kg aluminium. These values are even lower in the mitigation scenarios which assume a greater and faster decarbonization of electricity mixes. A contribution analysis showed that on a global scale, the decarbonization of electrical mixes has the greatest potential for reducing greenhouse gas emissions, while the adoption of the inert anode electrolysis process would result in marginal reductions. Third, a dynamic MFA of aluminum and its alloy was carried out in order to quantify the accumulation of stock, the demand for aluminum, and the flows to be recycled in the coming decades. This was done in line with the SSP framework and results, leading to the second article. The results show no saturation of the global stock per capita before 2100, reaching a range between 200 and 400 kg per capita depending on the socio-economic scenario. For the business-as-usual scenario, global annual demand rises to 100 Mt in 2050 and peaks at 130 Mt in 2090, showing a total stock saturation. No major mismatch between demand and end-of-life aluminum alloy flows has been observed. This means that with proper dismantling and sorting, changes in alloy demand would not limit the implementation of a circular aluminum industry. Finally, a model for optimizing the sorting of end-of-life aluminum flows with the aim of minimizing the environmental impacts of the industry was developed, integrating the results of LCA and MFA. This led to the third article. Improved sorting can reduce the impacts of the system by 30% by reducing inter-alloy contamination as well as the demand for primary aluminum. Improving circularity, by increasing recycling, automatically leads to reduced environmental impacts for the aluminum industry. Sensitivity analyses have shown how an increase of the collection rate and dismantling has the potential to further reduce the impacts of the system. The results also made it possible to identify different types of closed-loop recycling that should be promoted as a priority in specific sectors, such as construction and aluminum cans. The main limitations of this research project are that the scenarios developed do not take into account potential disruptive societal or technological changes, that the geographical disaggregation into five global regions induces a certain heterogeneity in each region, that the optimization model only covers the environmental aspects and that the intermediate stages of production and transformation of aluminum into products have been excluded from the scope of the studies. While a circular economy has a strong potential to drive changes, the tools available must be adapted and improved to lead a low carbon and circular transformation. This thesis is in line with those improvements

    How much sorting is required for a circular low carbon aluminum economy?

    No full text
    ABSTRACT: Aluminum recycling follows a downcycling dynamic where wrought alloys are transformed into cast alloys, accumulating tramp elements at every cycle. With the saturation of stocks of aluminum and the reduction of the demand for cast alloy due to electrification of transport, improvement in the recycling system must be made to avoid a surplus of unused recycled aluminum, reduce the overall environmental impacts of the industry, and move toward a circular economy. We aim to evaluate the potential environmental benefits of improving sorting efforts by combining operations research, prospective material flow analysis, and life cycle assessment. An optimization defines the optimal sorting to minimize climate change impacts according to different sorting efforts, dismantling conditions, and collection rates. Results show how the improvement of sorting can reduce by around 30% the greenhouse gas emissions of the industry, notably by reducing unused scrap generation and increasing the recycled content of the flows that supply the demand of aluminum. The best performance is achievable with four different sorting pathways. Further improvements occur with a better dismantling and an increase of collection rates, but it requires more sorting pathways. Results point to different closed-loop recycling initiatives that should be promoted on priority in specific sectors, like the building and construction sector and the aluminum cans industry. To implement a better material circularity, the mobilization of different stakeholders is needed. From a wider perspective, the article shows how operations research can be used to project a circular future in a specific industry

    Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways

    No full text
    Aluminum is an energy-intensive material that is typically used as an alloy. The environmental impacts caused by its production can potentially be spread out over multiple uses through repeated recycling loops. However, inter-alloy contamination can limit the circularity of aluminum, which highlights the importance of analyzing prospective stock dynamics of aluminum at an alloy and alloying element level to inform a more sustainable management of this resource. A dynamic material flow analysis (MFA) of aluminum alloys was developed in line with the shared socioeconomic pathways (SSP) framework to generate consistent scenarios of the evolution of aluminum stocks and flows from 2015 to 2100 covering 11 economic sectors in 5 world regions. A sector-specific and bottom-up modeling approach was developed. Results show no saturation of global stock per capita before 2100, reaching a range between 200 and 400 kg per capita according to different socioeconomic scenarios. For the business-as-usual scenario, the global annual inflow rises to 100 Mt in 2050 and peaks at 130 Mt in 2090, showing a saturation in total stock. Electricity-sector demand has the highest relative growth over the century, while building and construction demand saturates and decreases from 2090. No major mismatch between inflows and outflows of aluminum alloy is observed. This means that with appropriate dismantling and sorting, changes in alloy demand would not limit the implementation of a closed-loop aluminum industry. This study demonstrates the advantages of combining detailed MFAs and SSPs, both for greater consistency in circular economy modeling and for furthering scenario development efforts

    Economic and environmental life cycle assessment of a short-span aluminium composite bridge deck in Canada

    No full text
    The costs to maintain QuĂ©bec's infrastructure—most of which was built in the 1960s and 1970s—are considerable, and major maintenance and reconstruction will be required in the coming years. In recent years, aluminum associations promote the increase of aluminum use in infrastructure and especially in bridge construction. This research aims to investigate the advantages of using aluminum deck bridges, which require less maintenance than traditional materials due to the natural resistance to atmospheric corrosion of aluminum, despite their higher investment costs that may limit their deployment. More specifically, the study compares for the first time the life cycle costs and environmental impacts of an aluminum-steel composite deck with a more traditional concrete-steel composite deck and provides a parametrized model allowing practitioners and designers to perform screening life cycle assessment and cost of short span bridge based on our data and results. Results show that the initial cost of aluminum deck is double that of concrete deck, but the overall cost is actually four times lower over the entire life cycle. The environmental results demonstrate the benefits of aluminum deck. Our main recommendation for future decision making in road infrastructure management is therefore to systematically expand the scope of the analysis integrating a full life cycle thinking also including the effects from traffic diversion

    How can LCA include prospective elements to assess emerging technologies and system transitions? The 76th LCA Discussion Forum on Life Cycle Assessment, 19 November 2020

    Get PDF
    This paper summarizes the 76th LCA Discussion Forum end its main findings. Main issues when addressing emerging technologies\ua0identified were: the lack of primary data, the need for (shared) future background scenarios and (guidlines for) a common methodology. The following\ua0recommendations have been derived by the organizers: 1) Specific foreground inventories are always tailor-made, but consistency can be improved through\ua0lists of mandatory considerations.\ua02) Continue sharing (future) technology data and proxy processes, that can be readily replicated to new studies and assist in developing inventories.\ua03) Streamline and unify the process of including scenarios for background systems. New approaches may provide first important solutions to efficiently\ua0include consistent future scenarios in prospective LCA
    corecore