843 research outputs found

    Interplay between geometry and flow distribution in an airway tree

    Full text link
    Uniform fluid flow distribution in a symmetric volume can be realized through a symmetric branched tree. It is shown here, however, that the flow partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present. This is found by direct numerical simulation of the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching elements as well as their angular arrangement. Our results indicate that physiological variability should be severely restricted in order to ensure uniform fluid distribution in a tree. This study suggests that any non-uniformity in the air flow distribution in human lungs should be influenced by the respiratory conditions, rest or hard exercise

    Oncogenic transformation of mesenchymal stem cells decreases Nrf2 expression favoring in vivo tumor growth and poorer survival

    Get PDF
    BACKGROUND: The transcription factor Nrf2 is a key regulator of the cellular antioxidant response, and its activation by chemoprotective agents has been proposed as a potential strategy to prevent cancer. However, activating mutations in the Nrf2 pathway have been found to promote tumorigenesis in certain models. Therefore, the role of Nrf2 in cancer remains contentious. METHODS: We employed a well-characterized model of stepwise human mesenchymal stem cell (MSC) transformation and breast cancer cell lines to investigate oxidative stress and the role of Nrf2 during tumorigenesis. The Nrf2 pathway was studied by microarray analyses, qRT-PCR, and western-blotting. To assess the contribution of Nrf2 to transformation, we established tumor xenografts with transformed MSC expressing Nrf2 (n = 6 mice per group). Expression and survival data for Nrf2 in different cancers were obtained from GEO and TCGA databases. All statistical tests were two-sided. RESULTS: We found an accumulation of reactive oxygen species during MSC transformation that correlated with the transcriptional down-regulation of antioxidants and Nrf2-downstream genes. Nrf2 was repressed in transformed MSC and in breast cancer cells via oncogene-induced activation of the RAS/RAF/ERK pathway. Furthermore, restoration of Nrf2 function in transformed cells decreased reactive oxygen species and impaired in vivo tumor growth (P = 0.001) by mechanisms that included sensitization to apoptosis, and a decreased hypoxic/angiogenic response through HIF-1α destabilization and VEGFA repression. Microarray analyses showed down-regulation of Nrf2 in a panel of human tumors and, strikingly, low Nrf2 expression correlated with poorer survival in patients with melanoma (P = 0.0341), kidney (P = 0.0203) and prostate (P = 0.00279) cancers. CONCLUSIONS: Our data indicate that oncogene-induced Nrf2 repression is an adaptive response for certain cancers to acquire a pro-oxidant state that favors cell survival and in vivo tumor growth

    Bezlotoxumab and Recurrent Clostridium difficile Infection

    Get PDF

    Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    Get PDF
    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program

    Monitoring the Growth of an Orthotopic Tumour Xenograft Model: Multi-Modal Imaging Assessment with Benchtop MRI (1T), High-Field MRI (9.4T), Ultrasound and Bioluminescence

    Get PDF
    BACKGROUND: Research using orthotopic and transgenic models of cancer requires imaging methods to non-invasively quantify tumour burden. As the choice of appropriate imaging modality is wide-ranging, this study aimed to compare low-field (1T) magnetic resonance imaging (MRI), a novel and relatively low-cost system, against established preclinical techniques: bioluminescence imaging (BLI), ultrasound imaging (US), and high-field (9.4T) MRI. METHODS: A model of colorectal metastasis to the liver was established in eight mice, which were imaged with each modality over four weeks post-implantation. Tumour burden was assessed from manually segmented regions. RESULTS: All four imaging systems provided sufficient contrast to detect tumours in all of the mice after two weeks. No significant difference was detected between tumour doubling times estimated by low-field MRI, ultrasound imaging or high-field MRI. A strong correlation was measured between high-field MRI estimates of tumour burden and all the other modalities (p < 0.001, Pearson). CONCLUSION: These results suggest that both low-field MRI and ultrasound imaging are accurate modalities for characterising the growth of preclinical tumour models

    The heats of formation of the haloacetylenes XCCY [X, Y = H, F, Cl]: basis set limit ab initio results and thermochemical analysis

    Full text link
    The heats of formation of haloacetylenes are evaluated using the recent W1 and W2 ab initio computational thermochemistry methods. These calculations involve CCSD and CCSD(T) coupled cluster methods, basis sets of up to spdfgh quality, extrapolations to the one-particle basis set limit, and contributions of inner-shell correlation, scalar relativistic effects, and (where relevant) first-order spin-orbit coupling. The heats of formation determined using W2 theory are: \hof(HCCH) = 54.48 kcal/mol, \hof(HCCF) = 25.15 kcal/mol, \hof(FCCF) = 1.38 kcal/mol, \hof(HCCCl) = 54.83 kcal/mol, \hof(ClCCCl) = 56.21 kcal/mol, and \hof(FCCCl) = 28.47 kcal/mol. Enthalpies of hydrogenation and destabilization energies relative to acetylene were obtained at the W1 level of theory. So doing we find the following destabilization order for acetylenes: FCCF >> ClCCF >> HCCF >> ClCCCl >> HCCCl >> HCCH. By a combination of W1 theory and isodesmic reactions, we show that the generally accepted heat of formation of 1,2-dichloroethane should be revised to -31.8±\pm0.6 kcal/mol, in excellent agreement with a very recent critically evaluated review. The performance of compound thermochemistry schemes such as G2, G3, G3X and CBS-QB3 theories has been analyzed.Comment: Mol. Phys., in press (E. R. Davidson issue
    • …
    corecore