40 research outputs found

    Discovering and verifying DNA polymorphisms in a mung bean [V. radiata (L.) R. Wilczek] collection by EcoTILLING and sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vigna radiata</it>, which is classified in the family Fabaceae, is an important economic crop and a dietary staple in many developing countries. The species <it>radiata </it>can be further subdivided into varieties of which the variety <it>sublobata </it>is currently acknowledged as the putative progenitor of <it>radiata</it>. EcoTILLING was employed to identify single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELS) in a collection of <it>Vigna radiata </it>accessions.</p> <p>Findings</p> <p>A total of 157 DNA polymorphisms in the collection were produced from ten primer sets when using <it>V. radiata </it>var. <it>sublobata </it>as the reference. The majority of polymorphisms detected were found in putative introns. The banding patterns varied from simple to complex as the number of DNA polymorphisms between two pooled samples increased. Numerous SNPs and INDELS ranging from 4–24 and 1–6, respectively, were detected in all fragments when pooling <it>V. radiata </it>var. <it>sublobata </it>with <it>V. radiata </it>var. <it>radiata</it>. On the other hand, when accessions of <it>V. radiata </it>var. <it>radiata </it>were mixed together and digested with CEL I relatively few SNPs and no INDELS were detected.</p> <p>Conclusion</p> <p>EcoTILLING was utilized to identify polymorphisms in a collection of mung bean, which previously showed limited molecular genetic diversity and limited morphological diversity in the flowers and pod descriptors. Overall, EcoTILLING proved to be a powerful genetic analysis tool providing the rapid identification of naturally occurring variation.</p

    Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sorghum [<it>Sorghum bicolor </it>(L.) Moench] is ranked as the fifth most important grain crop and serves as a major food staple and fodder resource for much of the world, especially in arid and semi-arid regions. The recent surge in sorghum research is driven by its tolerance to drought/heat stresses and its strong potential as a bioenergy feedstock. Completion of the sorghum genome sequence has opened new avenues for sorghum functional genomics. However, the availability of genetic resources, specifically mutant lines, is limited. Chemical mutagenesis of sorghum germplasm, followed by screening for mutants altered in important agronomic traits, represents a rapid and effective means of addressing this limitation. Induced mutations in novel genes of interest can be efficiently assessed using the technique known as Targeting Induced Local Lesion IN Genomes (TILLING).</p> <p>Results</p> <p>A sorghum mutant population consisting of 1,600 lines was generated from the inbred line BTx623 by treatment with the chemical agent ethyl methanesulfonate (EMS). Numerous phenotypes with altered morphological and agronomic traits were observed from M<sub>2 </sub>and M<sub>3 </sub>lines in the field. A subset of 768 mutant lines was analyzed by TILLING using four target genes. A total of five mutations were identified resulting in a calculated mutation density of 1/526 kb. Two of the mutations identified by TILLING and verified by sequencing were detected in the gene encoding caffeic acid <it>O</it>-methyltransferase (<it>COMT</it>) in two independent mutant lines. The two mutant lines segregated for the expected brown midrib (<it>bmr</it>) phenotype, a trait associated with altered lignin content and increased digestibility.</p> <p>Conclusion</p> <p>TILLING as a reverse genetic approach has been successfully applied to sorghum. The diversity of the mutant phenotypes observed in the field, and the density of induced mutations calculated from TILLING indicate that this mutant population represents a useful resource for members of the sorghum research community. Moreover, TILLING has been demonstrated to be applicable for sorghum functional genomics by evaluating a small subset of the EMS-induced mutant lines.</p

    Phylogenetic relationships and genetic diversity of the USDA \u3ci\u3eVigna\u3c/i\u3e germplasm collection revealed by gene-derived markers and sequencing

    Get PDF
    Phylogenetic relationships in the USDA Vigna germplasm collection are somewhat unclear and their genetic diversity has not been measured empirically. To reveal interspecific phylogenetic relationships and assess their genetic diversity, 48 accessions representing 12 Vigna species were selected, and 30 gene-derived markers from legumes were employed. Some high-quality amplicons were sequenced. Indels (insertion/deletions) were discovered from the sequence alignments that were specific identifiers for some Vigna species. With regard to revealing polymorphisms, intron-spanning markers were more effective than exon-derived markers. These gene-derived markers were more successful in revealing interspecific polymorphisms than intraspecific polymorphisms at both the DNA fragment and sequence levels. Two different dendrograms were generated from DNA fragment data and sequence data, respectively. The results from these two dendrograms supported each other and showed similar phylogenetic relationships among the Vigna species investigated. The accessions clustered into four main groups and 13 subgroups. Each subgroup represents a subgenus or a species. Phylogenetic analysis revealed that an accession might be misclassified in our collection. The putative misclassified accession was further supported by seed morphology. Limited intraspecific genetic diversity was revealed by these gene-derived markers and/or sequences. The USDA Vigna germplasm collection currently consists of multiple species with many accessions further classified into specific subspecies, but very few subspecies of the total subspecies available exist within the collection. Based on our results, more attention should be paid to the subspecies, wild forms and/or botanical varieties for future curation in order to expand the genetic diversity of Vigna germplasm in the USDA collection

    Solid-State Nuclear Magnetic Resonance Spectroscopy Studies of Furanose Ring Dynamics in the DNAHhaI Binding Site

    No full text
    The dynamics of the furanose rings in the GCGC moiety of the DNA oligomer [d(G1A2T3A4G5C6G7C8T9A10T11C12)]2 are studied by using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs selectively deuterated on the furanose rings of nucleotides within the 5′-GCGC-3′ moiety indicated that all of these positions are structurally flexible. The furanose ring within the deoxycytidine that is the methylation target displays the largest-amplitude structural changes according to the observed deuterium NMR line shapes, whereas the furanose rings of nucleotides more remote from the methylation site have less-mobile furanose rings (i.e., with puckering amplitudes \u3c 0.3 Å). Previous work has shown that methylation reduces the amplitude of motion in the phosphodiester backbone of the same DNA, and our observations indicate that methylation perturbs backbone dynamics through the furanose ring. These NMR data indicate that the 5′-GCGC-3′ is dynamic, with the largest-amplitude motions occurring nearest the methylation site. The inherent flexibility of this moiety in DNA makes the molecule more amenable to the large-amplitude structural rearrangements that must occur when the DNA binds to the HhaI methyltransferase

    Backbone Dynamics in the DNA Hha

    No full text
    corecore