38 research outputs found

    The Effects of Free-Living Interval-Walking Training on Glycemic Control, Body Composition, and Physical Fitness in Type 2 Diabetes Patients:A randomized, controlled trial

    Get PDF
    OBJECTIVE: To evaluate the feasibility of free-living walking training in type 2 diabetic patients and to investigate the effects of interval-walking training versus continuous-walking training upon physical fitness, body composition, and glycemic control. RESEARCH DESIGN AND METHODS: Subjects with type 2 diabetes were randomized to a control (n = 8), continuous-walking (n = 12), or interval-walking group (n = 12). Training groups were prescribed five sessions per week (60 min/session) and were controlled with an accelerometer and a heart-rate monitor. Continuous walkers performed all training at moderate intensity, whereas interval walkers alternated 3-min repetitions at low and high intensity. Before and after the 4-month intervention, the following variables were measured: VO(2)max, body composition, and glycemic control (fasting glucose, HbA(1c), oral glucose tolerance test, and continuous glucose monitoring [CGM]). RESULTS: Training adherence was high (89 ± 4%), and training energy expenditure and mean intensity were comparable. VO(2)max increased 16.1 ± 3.7% in the interval-walking group (P < 0.05), whereas no changes were observed in the continuous-walking or control group. Body mass and adiposity (fat mass and visceral fat) decreased in the interval-walking group only (P < 0.05). Glycemic control (elevated mean CGM glucose levels and increased fasting insulin) worsened in the control group (P < 0.05), whereas mean (P = 0.05) and maximum (P < 0.05) CGM glucose levels decreased in the interval-walking group. The continuous walkers showed no changes in glycemic control. CONCLUSIONS: Free-living walking training is feasible in type 2 diabetic patients. Continuous walking offsets the deterioration in glycemia seen in the control group, and interval walking is superior to energy expenditure–matched continuous walking for improving physical fitness, body composition, and glycemic control

    Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells

    Get PDF
    Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide automated analysis of major histocompatibility complex (MHC) multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore difficult to detect. We used a highly heterogeneous dataset from a recent MHC multimer proficiency panel to assess if MHC multimer-binding CD8+ T cells could be analyzed with computational solutions currently available, and if such analyses would reduce the technical variation across different laboratories. We used three different methods, FLOw Clustering without K (FLOCK), Scalable Weighted Iterative Flow-clustering Technique (SWIFT), and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0.01 to 1.5% of lymphocytes within samples from two donors. Experience from this analysis shows that all three programs can be used for the identification of high to intermediate frequency of MHC multimer-binding T cell populations, with results very similar to that of manual gating. For the less frequent populations (&lt;0.1% of live, single lymphocytes), SWIFT outperformed the other tools. As used in this study, none of the algorithms offered a completely automated pipeline for identification of MHC multimer populations, as varying degrees of human interventions were needed to complete the analysis. In this study, we demonstrate the feasibility of using automated analysis pipelines for assessing and identifying even rare populations of antigen-responsive T cells and discuss the main properties, differences, and advantages of the different methods tested

    The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum

    No full text
    We investigated glucose tolerance and postprandial glucose fluxes immediately after a single bout of aerobic exercise in subjects representing the entire glucose tolerance continuum. Twenty‐four men with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or type 2 diabetes (T2D; age: 56 ± 1 years; body mass index: 27.8 ± 0.7 kg/m(2), P > 0.05) underwent a 180‐min oral glucose tolerance test (OGTT) combined with constant intravenous infusion of [6,6‐(2)H(2)]glucose and ingestion of [U‐(13)C]glucose, following 1 h of exercise (50% of peak aerobic power) or rest. In both trials, plasma glucose concentrations and kinetics, insulin, C‐peptide, and glucagon were measured. Rates (mg kg(−1) min(−1)) of glucose appearance from endogenous (R(aEndo)) and exogenous (oral glucose; R(a)(OGTT)) sources, and glucose disappearance (R(d)) were determined. We found that exercise increased R(aEndo), R(aOGTT), and R(d) (all P < 0.0001) in all groups with a tendency for a greater (~20%) peak R(aOGTT) value in NGT subjects when compared to IGT and T2D subjects. Accordingly, following exercise, the plasma glucose concentration during the OGTT was increased in NGT subjects (P < 0.05), while unchanged in subjects with IGT and T2D. In conclusion, while a single bout of moderate‐intensity exercise increased the postprandial glucose response in NGT subjects, glucose tolerance following exercise was preserved in the two hyperglycemic groups. Thus, postprandial plasma glucose responses immediately following exercise are dependent on the underlying degree of glycemic control

    Determining pancreatic β-cell compensation for changing insulin sensitivity using an oral glucose tolerance test

    No full text
    Plasma glucose, insulin, and C-peptide responses during an OGTT are informative for both research and clinical practice in type 2 diabetes. The aim of this study was to use such information to determine insulin sensitivity and insulin secretion so as to calculate an oral glucose disposition index (DI(OGTT)) that is a measure of pancreatic β-cell insulin secretory compensation for changing insulin sensitivity. We conducted an observational study of n = 187 subjects, representing the entire glucose tolerance continuum from normal glucose tolerance to type 2 diabetes. OGTT-derived insulin sensitivity (S(I OGTT)) was calculated using a novel multiple-regression model derived from insulin sensitivity measured by hyperinsulinemic euglycemic clamp as the independent variable. We also validated the novel S(I OGTT) in n = 40 subjects from an independent data set. Plasma C-peptide responses during OGTT were used to determine oral glucose-stimulated insulin secretion (GSIS(OGTT)), and DI(OGTT) was calculated as the product of S(I OGTT) and GSIS(OGTT). Our novel S(I OGTT) showed high agreement with clamp-derived insulin sensitivity (typical error = +3.6%; r = 0.69, P < 0.0001) and that insulin sensitivity was lowest in subjects with impaired glucose tolerance and type 2 diabetes. GSIS(OGTT) demonstrated a significant inverse relationship with S(I OGTT). GSIS(OGTT) was lowest in normal glucose-tolerant subjects and greatest in those with impaired glucose tolerance. DI(OGTT) was sequentially lower with advancing glucose intolerance. We hereby derive and validate a novel OGTT-derived measurement of insulin sensitivity across the entire glucose tolerance continuum and demonstrate that β-cell compensation for changing insulin sensitivity can be readily calculated from clinical variables collected during OGTT
    corecore