22,491 research outputs found

    Scaling behavior of spin transport in hydrogenated graphene

    Full text link
    We calculate the spin transport of hydrogenated graphene using the Landauer-B\"uttiker formalism with a spin-dependent tight-binding Hamiltonian. The advantages of using this method is that it simultaneously gives information on sheet resistance and localization length as well as spin relaxation length. Furthermore, the Landauer-B\"uttiker formula can be computed very efficiently using the recursive Green's function technique. Previous theoretical results on spin relaxation time in hydrogenated graphene have not been in agreement with experiments. Here, we study magnetic defects in graphene with randomly aligned magnetic moments, where interference between spin-channels is explicitly included. We show that the spin relaxation length and sheet resistance scale nearly linearly with the impurity concentration. Moreover, the spin relaxation mechanism in hydrogenated graphene is Markovian only near the charge neutrality point or in the highly dilute impurity limit

    A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism

    Get PDF
    We present a two particle model to explain the mechanism that stabilizes a bunch of positively charged ions in an "ion trap resonator" [Pedersen etal, Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two ions into two mappings for the free motion in different parts of the trap and one for a compressing momentum kick. The ions' interaction is modelled by a time delay, which then changes the balance between adjacent momentum kicks. Through these mappings we identify the microscopic process that is responsible for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev

    Inflammation and changes in cytokine levels in neurological feline infectious peritonitis.

    Get PDF
    Feline infectious peritonitis (FIP) is a progressive, fatal, predominantly Arthus-type immune-mediated disease that is triggered when cats are infected with a mutant enteric coronavirus. The disease presents variably with multiple organ failure, seizures, generalized effusion, or shock. Neurological FIP is clinically and pathologically more homogeneous than systemic 'wet' or 'dry' FIP; thus, comparison of cytokine profiles from cats with neurological FIP, wet FIP, and non-FIP neurological disease may provide insight into some baseline characteristics relating to the immunopathogenesis of neurological FIP. This study characterizes inflammation and changes in cytokines in the brain tissue of FIP-affected cats. Cellular infiltrates in cats with FIP included lymphocytes, plasma cells, neutrophils, macrophages, and eosinophils. IL-1 beta, IL-6, IL-12, IL-18, TNF-alpha, macrophage inhibitory protein (MIP)-1 alpha, and RANTES showed no upregulation in the brains of control cats, moderate upregulation in neurological FIP cats, and very high upregulation in generalized FIP cats. Transcription of IFN-gamma appeared upregulated in cats with systemic FIP and slightly downregulated in neurological FIP. In most cytokines tested, variance was extremely high in generalized FIP and much less in neurological FIP. Principal components analysis was performed in order to find the least number of 'components' that would summarize the cytokine profiles in cats with neurological FIP. A large component of the variance (91.7%) was accounted for by levels of IL-6, MIP-1 alpha, and RANTES. These findings provide new insight into the immunopathogenesis of FIP and suggest targets for immune therapy of this disease

    The ac-Driven Motion of Dislocations in a Weakly Damped Frenkel-Kontorova Lattice

    Full text link
    By means of numerical simulations, we demonstrate that ac field can support stably moving collective nonlinear excitations in the form of dislocations (topological solitons, or kinks) in the Frenkel-Kontorova (FK) lattice with weak friction, which was qualitatively predicted by Bonilla and Malomed [Phys. Rev. B{\bf 43}, 11539 (1991)]. Direct generation of the moving dislocations turns out to be virtually impossible; however, they can be generated initially in the lattice subject to an auxiliary spatial modulation of the on-site potential strength. Gradually relaxing the modulation, we are able to get the stable moving dislocations in the uniform FK lattice with the periodic boundary conditions, provided that the driving frequency is close to the gap frequency of the linear excitations in the uniform lattice. The excitations have a large and noninteger index of commensurability with the lattice (suggesting that its actual value is irrational). The simulations reveal two different types of the moving dislocations: broad ones, that extend, roughly, to half the full length of the periodic lattice (in that sense, they cannot be called solitons), and localized soliton-like dislocations, that can be found in an excited state, demonstrating strong persistent internal vibrations. The minimum (threshold) amplitude of the driving force necessary to support the traveling excitation is found as a function of the friction coefficient. Its extrapolation suggests that the threshold does not vanish at the zero friction, which may be explained by radiation losses. The moving dislocation can be observed experimentally in an array of coupled small Josephson junctions in the form of an {\it inverse Josephson effect}, i.e., a dc-voltage response to the uniformly applied ac bias current.Comment: Plain Latex, 13 pages + 9 PostScript figures. to appear on Journal of Physics: condensed matte

    A generalized Fourier inversion theorem

    Full text link
    In this work we define operator-valued Fourier transforms for suitable integrable elements with respect to the Plancherel weight of a (not necessarily Abelian) locally compact group. Our main result is a generalized version of the Fourier inversion Theorem for strictly-unconditionally integrable Fourier transforms. Our results generalize and improve those previously obtained by Ruy Exel in the case of Abelian groups.Comment: 15 pages; some typos correcte

    Bubble coalescence in breathing DNA: Two vicious walkers in opposite potentials

    Full text link
    We investigate the coalescence of two DNA-bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribution of coalescence positions along the barrier. Below the melting temperature, we find a Kramers-type barrier crossing behaviour, while at high temperatures, the bubble corners perform drift-diffusion towards coalescence. The results are obtained by mapping the bubble dynamics on the problem of two vicious walkers in opposite potentials.Comment: 7 pages, 4 figure

    Clar Sextet Analysis of Triangular, Rectangular and Honeycomb Graphene Antidot Lattices

    Full text link
    Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer scale periodic array of holes in the graphene sheet a band gap may form; the size of the gap is controllable by adjusting the parameters of the lattice. The hole diameter, hole geometry, lattice geometry and the separation of the holes are parameters that all play an important role in determining the size of the band gap, which, for technological applications, should be at least of the order of tenths of an eV. We investigate four different hole configurations: the rectangular, the triangular, the rotated triangular and the honeycomb lattice. It is found that the lattice geometry plays a crucial role for size of the band gap: the triangular arrangement displays always a sizable gap, while for the other types only particular hole separations lead to a large gap. This observation is explained using Clar sextet theory, and we find that a sufficient condition for a large gap is that the number of sextets exceeds one third of the total number of hexagons in the unit cell. Furthermore, we investigate non-isosceles triangular structures to probe the sensitivity of the gap in triangular lattices to small changes in geometry

    A Mesolithic settlement site at Howick, Northumberland: a preliminary report

    Get PDF
    Excavations at a coastal site at Howick during 2000 and 2002 have revealed evidence for a substantial Mesolithic settlement and a Bronze Age cist cemetery. Twenty one radiocarbon determinations of the earlier eighth millennium BP (Cal.) indicate that the Mesolithic site is one of the earliest known in northern Britain. An 8m core of sediment was recovered from stream deposits adjacent to the archaeological site which provides information on local environmental conditions. Howick offers a unique opportunity to understand aspects of hunter-gatherer colonisation and settlement during a period of rapid palaeogeographical change around the margins of the North Sea basin, at a time when it was being progressively inundated by the final stages of the postglacial marine transgression. The cist cemetery will add to the picture of Bronze Age occupation of the coastal strip and again reveals a correlation between the location of Bronze Age and Mesolithic sites which has been observed elsewhere in the region
    corecore