20,043 research outputs found

    A library of ab initio Raman spectra for automated identification of 2D materials

    Full text link
    Raman spectroscopy is frequently used to identify composition, structure and layer thickness of 2D materials. Here, we describe an efficient first-principles workflow for calculating resonant first-order Raman spectra of solids within third-order perturbation theory employing a localized atomic orbital basis set. The method is used to obtain the Raman spectra of 733 different monolayers selected from the computational 2D materials database (C2DB). We benchmark the computational scheme against available experimental data for 15 known monolayers. Furthermore, we propose an automatic procedure for identifying a material based on an input experimental Raman spectrum and illustrate it for the cases of MoS2_2 (H-phase) and WTe2_2 (T^\prime-phase). The Raman spectra of all materials at different excitation frequencies and polarization configurations are freely available from the C2DB. Our comprehensive and easily accessible library of \textit{ab initio} Raman spectra should be valuable for both theoreticians and experimentalists in the field of 2D materialsComment: 17 pages, 7 figure

    Scaling behavior of spin transport in hydrogenated graphene

    Full text link
    We calculate the spin transport of hydrogenated graphene using the Landauer-B\"uttiker formalism with a spin-dependent tight-binding Hamiltonian. The advantages of using this method is that it simultaneously gives information on sheet resistance and localization length as well as spin relaxation length. Furthermore, the Landauer-B\"uttiker formula can be computed very efficiently using the recursive Green's function technique. Previous theoretical results on spin relaxation time in hydrogenated graphene have not been in agreement with experiments. Here, we study magnetic defects in graphene with randomly aligned magnetic moments, where interference between spin-channels is explicitly included. We show that the spin relaxation length and sheet resistance scale nearly linearly with the impurity concentration. Moreover, the spin relaxation mechanism in hydrogenated graphene is Markovian only near the charge neutrality point or in the highly dilute impurity limit

    Bubble coalescence in breathing DNA: Two vicious walkers in opposite potentials

    Full text link
    We investigate the coalescence of two DNA-bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribution of coalescence positions along the barrier. Below the melting temperature, we find a Kramers-type barrier crossing behaviour, while at high temperatures, the bubble corners perform drift-diffusion towards coalescence. The results are obtained by mapping the bubble dynamics on the problem of two vicious walkers in opposite potentials.Comment: 7 pages, 4 figure

    The ac-Driven Motion of Dislocations in a Weakly Damped Frenkel-Kontorova Lattice

    Full text link
    By means of numerical simulations, we demonstrate that ac field can support stably moving collective nonlinear excitations in the form of dislocations (topological solitons, or kinks) in the Frenkel-Kontorova (FK) lattice with weak friction, which was qualitatively predicted by Bonilla and Malomed [Phys. Rev. B{\bf 43}, 11539 (1991)]. Direct generation of the moving dislocations turns out to be virtually impossible; however, they can be generated initially in the lattice subject to an auxiliary spatial modulation of the on-site potential strength. Gradually relaxing the modulation, we are able to get the stable moving dislocations in the uniform FK lattice with the periodic boundary conditions, provided that the driving frequency is close to the gap frequency of the linear excitations in the uniform lattice. The excitations have a large and noninteger index of commensurability with the lattice (suggesting that its actual value is irrational). The simulations reveal two different types of the moving dislocations: broad ones, that extend, roughly, to half the full length of the periodic lattice (in that sense, they cannot be called solitons), and localized soliton-like dislocations, that can be found in an excited state, demonstrating strong persistent internal vibrations. The minimum (threshold) amplitude of the driving force necessary to support the traveling excitation is found as a function of the friction coefficient. Its extrapolation suggests that the threshold does not vanish at the zero friction, which may be explained by radiation losses. The moving dislocation can be observed experimentally in an array of coupled small Josephson junctions in the form of an {\it inverse Josephson effect}, i.e., a dc-voltage response to the uniformly applied ac bias current.Comment: Plain Latex, 13 pages + 9 PostScript figures. to appear on Journal of Physics: condensed matte

    The digital challenge for multinational mobile network operators. More marginalization or rejuvenation?

    Get PDF
    Multinational mobile network operators (MNOs) rapidly emerged in the early 1990s and for a decade and a half were the dominant actors in their industry. We analyze the development and competitiveness of a typical MNO, Telenor. With the introduction of 4G in 2010, we show that Telenor, like other MNOs largely failed to respond to the opportunity that connectivity provided to develop digital services. Instead, these were developed by technology platform companies such as Amazon, Google and Microsoft. Telenor became a marginalized supplier of standardized internet connectivity. We argue that the ‘decade of lost opportunity’ (2010-2020) for Telenor was a product of a lack of ‘recombinant firm-specific advantages’ (FSARs). With the launch of 5G, an emerging global digital infrastructure, this sidelining is set to intensify unless Telenor responds to this new opportunity by developing B2B digital services. We analyze the FSARs that are necessary for a successful transition of capturing the value that 5G provides and the degree to which they are present, or potentially present, in Telenor

    Excitation of zero-frequency magnetic field-aligned currents by ionospheric heating

    Get PDF
    Time-dependent, three-dimensional numerical simulations of the reduced MHD model describing shear Alfve ́n waves in the magnetosphere provide an interesting prediction superficially similar to results of several iono- spheric heating experiments conducted at high altitudes. In these experiments, heating of the ionospheric F-region with a constant/zero-frequency beam of HF waves causes luminous structures in the ionosphere in the form of a ring or a solid spot with a characteristic size comparable to the size of the heated spot. Simulations suggest that spots/rings or similar optical appearance might be associated with a magnetic field- aligned current system produced by the ionospheric heat- ing. Two of the most interesting features of this current system are (1) strong localization across the ambient mag- netic field and (2) distinctive non-symmetrical luminous sig- natures (ring/spot) in magnetically conjugate locations in the ionosphere

    A Mesolithic settlement site at Howick, Northumberland: a preliminary report

    Get PDF
    Excavations at a coastal site at Howick during 2000 and 2002 have revealed evidence for a substantial Mesolithic settlement and a Bronze Age cist cemetery. Twenty one radiocarbon determinations of the earlier eighth millennium BP (Cal.) indicate that the Mesolithic site is one of the earliest known in northern Britain. An 8m core of sediment was recovered from stream deposits adjacent to the archaeological site which provides information on local environmental conditions. Howick offers a unique opportunity to understand aspects of hunter-gatherer colonisation and settlement during a period of rapid palaeogeographical change around the margins of the North Sea basin, at a time when it was being progressively inundated by the final stages of the postglacial marine transgression. The cist cemetery will add to the picture of Bronze Age occupation of the coastal strip and again reveals a correlation between the location of Bronze Age and Mesolithic sites which has been observed elsewhere in the region
    corecore