76 research outputs found

    Geochemical Characterization and Temporal Changes in Parietal Gas Emissions at Mt. Etna (Italy) During the Period July 2000 - July 2003

    Get PDF
    Several types of natural gas emissions (soil gas, low temperature fumaroles, gas bubbling in mud pools) were collected monthly on Mt. Etna volcano between July 2000 and July 2003 both from its summit and its flanks. Samples were analysed for the determination of the concentrations of CO2, CH4, He, H2, CO as well as the isotopic ratios of 13 14 C/ C of CO2 (δ13C) and He (R/Ra). The analysed gases were chemically divided into two groups: air-contaminated (from sites closer to the summit vents of Mt. Etna) and CO2 - rich. Among the latter, samples from the lower SW flank of the volcano showed high contents of biogenic thermogenic and/or microbial CH4. Isotopic shift in the δ13C values is caused by input of organic CO2 and/or by interaction between magmatic CO2 and shallow ground water as a function of water temperature and CO2 flux from depth. Based on a graphic method applied to δ13 TDIC C of some ground water, the inferred isotopic composition of the pristine magmatic gas at Mt. Etna is characterised by δ13C values ranging from -2 to -1 0 00 . During the period July 2000 - July 2003 significant variations were observed in many of the investigated parameters almost at all monitored sites. Seasonal influences were generally found to be negligible, with only a limited effect of air temperature changes on soil CO2 and ground temperature in only two of the air-contaminated sites. The largest chemical anomalies were observed in the air-contaminated sites, probably because of the strong buffering power of local ground water on gases released through the most peripheral areas where the CO2-rich sites are located. The anomalous changes observed during the study period can be explained in terms of progressive gas release from separate batches of magma that ascend towards the surface in a step-wise manner. Data relevant to the period following the 2002-03 eruption suggest that magma kept accumulating beneath the volcano, thus increasing the probability of a new large eruption at Mt. Etna

    Georeferenced cartography dataset of the La Fossa crater fumarolic field at Vulcano Island (Aeolian Archipelago, Italy): conversion and comparison of data from local to global positioning methods

    Get PDF
    The present study illustrates the procedures applied for the coordinate system conversion of the historical fumarole positions at La Fossa crater, to allow their comparison with newly acquired global positioning system (GPS) data. Due to the absence of ground control points in the field and on both the old Gauss Boaga and the new UTM WGS 1984 maps, we had to model the transformation errors between the two systems using differential GPS techniques. Once corrected, the maps show a residual Easting shifting, due to erroneous georeferencing of the original base maps; this is corrected by morphological comparative methods. The good correspondence between the corrected positions of the historical data and the results of the new GPS survey that was carried out in 2009 highlights the good quality of the old surveys, although they were carried out without the use of accurate topographical instruments

    A tool for evaluating geothermal power exploitability and its application to Ischia, Southern Italy

    Get PDF
    The paper proposes a method to evaluate the potential for electric power production at any site of possible geothermal interest. Accounting for geological data of the reservoirs, the method allows the computation of the available electrical power of the investigated site. Electrical energy production from geothermal sources is realized through different techniques, such as single flash and double flash, dry steam, and binary ORC plants. The technique chosen to be the most productive is determined by analyzing a specific range of geofluid properties, mainly temperature and pressure. Moreover, each plant typology has a global efficiency that may be correlated to geofluid enthalpy by empiric relations available in literature. The proposed evaluation method brings together all these correlations, yielding the power availability from a geosource, once its temperature and pressure are known. The method takes as input the geofluid available flow rate, its pressure, temperature and non-condensable gas content. It defines the best plant option from these parameters, calculates its global efficiency and finally returns the actual available power. For sites of geothermic interest, such as the volcanic island of Ischia in Southern Italy, the results of the application of this new method clearly highlight the most suitable zones for power plants installations

    The flight of Arcadia: spatial CO2/SO2 variations in a cross section above the Nord East crater of Etna volcano

    Get PDF
    The CO2/SO2 ratio in volcanic plumes of open conduit volcanoes can provide useful information about the magma depth inside a conduit and the possible occurrence of an eruptive event. Moreover, the same CO2 measurement when combined with a SO2 flux measurement, commonly carried out at many volcanoes nowadays, is used to contribute to an improved estimate of global volcanic CO2 budget. Today worldwide at 13 volcanoes automated in-situ instruments (known as Multi-GAS stations) are applied to continuously determine CO2/SO2 ratios and to use this signal as additional parameter for volcanic monitoring. Usually these instruments carry out measurements of half an hour 4 – 6 times/day and thus provide continuous CO2/SO2 values and their variability. The stations are located at crater rims in a position that according to the prevailing winds is invested by the plume. Obviously, although the stations are carefully positioned, it is inevitable that other sources than the plume itself, e.g. soil degassing and surrounding fumaroles, contribute and will be measured as well, covering the ‘real’ values. Between July and September 2014 experiments were carried out on the North East crater (NEC) of Mount Etna, installing a self-made cable car that crossed the crater from one side to the other. The basket, called “Arcadia”, was equipped with an automated standard Multi-GAS station and a GPS, which acquired at high frequency (0.5 Hz) the following parameters : CO2, SO2, H2S, Rh, T, P and geo-coordinates. The choice of NEC of the volcano Etna was based on its accessibility, the relative small diameter (about 230 m) and the presence of a relatively constant and rather concentrated plume. Actually, NEC belongs also to the monitoring network EtnaPlume (managed by the INGV of Palermo). The aim of these experiments was to observe variations of each parameter, in particular the fluctuation of the CO2/SO2 ratio within the plume, moving from the edge to the center of the crater. The gained results give a first possibility to understand if common measurements carried out at the edge of a crater are subject to overor underestimation and about the order of derivations caused by other sources than the plume. A preliminary analysis results in a lower CO2/SO2 ratio in the central part of the crater versus the more peripheral one. The deviation between the average CO2/SO2 ratio and the center of the plume ranges from a minimum of 58% up to a maximum of 74%. An increased CO2/SO2 emission could be caused by the influence of soil and/or fumarolic degassing at the crater rim. This interpretation leads us to the conclusion that measurements by fixed installed stations might overestimate the CO2/SO2 ratio compared to values originating from the “pure” plume. Further on, it means that variations of up to 74%(in our experiment) don’t necessarily correlate with volcanic activity changes

    Total CO2 output from Ischia Island volcano (Italy)

    Get PDF
    The total amount of CO2 released at Ischia Island has been estimated from soil gas flux measurements and from chemical composition of the gases released by fumaroles or dissolved in groundwaters. The preliminary results indicate an overall CO2 output of about 15 kg s–1 from the entire island (46 km2). The main contribution to the total output from diffuse soil degassing is about 14.8 kg s–1, followed by dissolved CO2 of about 0.3 kg s–1. The contribution of fumaroles to the total output was found to be negligible (about 0.03 kg s–1). Ischia’s output, although being considerably less than that of open conduit volcanoes, is higher than many other volcanic systems, especially those related to volcanic arcs. The recent tensile tectonic regime of the area allows probably an easier upflow of CO2 from the mantle sustaining the diffuse degassing of the island

    Methane fluxes from the soils in active volcanic areas: the case of Pantelleria Island (Italy)

    Get PDF
    Methane, the most abundant hydrocarbon in the atmosphere, plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after CO2. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (Kvenvolden and Rogers, 2005). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Among natural sources the volcanic/geothermal emissions are probably the least constrained. Recent estimations for volcanic and geothermal systems in Europe (Etiope et al. 2007) gave a rather large provisional range (4-16 kt/a) that claims for much more field measurements in order to widen the current database and decrease the present uncertainties. Pantelleria is an active volcanic complex, at present in quiescent status, hosting a high enthalpy geothermal system. Explorative geothermal wells tapped an exploitable water-dominated reservoir at 600-800 m depth with maximum measured temperatures of 250 °C. While some data are available on diffuse CO2 fluxes, data on CH4 are available only for fumarolic fluids. In the present study we measured CH4 fluxes in the area of Favara Grande characterized by intense diffuse degassing and widespread signs of geothermal activity (fumaroles, steaming grounds and large zones devoid of vegetation). Values range from negative (-43 to 0 mgCH4 m2 day), typical of soils with methanotrophic activity, up to 3500 mgCH4 m2 day in the most thermalized area. The preliminary estimate of the methane release from the area of Favara Grande is about 2.5 t/a. Extrapolation to the whole volcanic/geothermal system of Pantelleria gives about 10 t/a

    Preliminary conceptual model of the Cerro Blanco caldera-hosted geothermal system (Southern Puna, Argentina): Inferences from geochemical investigations.

    Get PDF
    The Cerro Blanco Caldera (CBC) is the youngest collapse caldera system in the Southern Central Andes (Southern Puna, Argentina). The CBC is subsiding with at an average velocity of 0.87 cm/year and hosts an active geothermal system. A geochemical characterization of emitted fluids was carried out based on the chemical and isotopic compositions of fumaroles, and thermal and cold springs discharged in this volcanic area with the aim of constructing the first hydrogeochemical conceptual model and preliminary estimate the geothermal potential. The main hydrothermal reservoir, likely hosted within the pre-caldera basement rocks, has a Na+-Clˉ(HCO3)ˉ composition with estimated temperatures ≥135 °C. The unconsolidated, fine-grained Cerro Blanco ignimbrite likely acts as the cap-rock of the hydrothermal system. The presence of phreatic eruption breccias in the surrounding area of the geothermal fumaroles supports the effectiveness of the pyroclastic deposit as sealing rocks. The isotopic data of water (δ18O and δD) indicate a meteoric recharge of the hydrothermal reservoir, suggesting as recharge areas the sectors surrounding the CBC, mainly towards the W and NW where large outcrops of the pre-caldera basement exist. A fault-controlled hydraulic connection between the hot springs and the hydrothermal reservoir is proposed for the Los Hornitos area. The fumaroles show the typical compositional features of hydrothermal fluids, being dominated by water vapor with significant concentrations of H2S, CH4 and H2. Considering the high geothermal gradient of this area (∼104 °C/km) and the relatively high fraction of mantle He (∼39%) calculated on the basis of the measured R/Ra values, the hydrothermal aquifer likely receives inputs of magmatic fluids from the degassing magma chamber. The preliminary geothermal potential at CBC was evaluated with the Volume Method, calculating up to E = 11.4*1018 J. Both the scarce presence of superficial thermal manifestations and the occurrence of an efficient cap-rock likely contribute to minimize the loss of thermal energy from the reservoir. The results here presented constitute the necessary base of knowledge for further accurate assessment of the geothermal potential and ultimately the implementation of the geothermal resource as a viable energy alternative for small localities or mining facilities isolated from the National Interconnected System due to their remote localization.Published1022136A. Geochimica per l'ambiente e geologia medicaJCR Journa

    Effect of solid waste landfill organic pollutants on groundwater in three areas of Sicily (Italy) characterized by different vulnerability

    Get PDF
    The aim of this study was to obtain information on the presence and levels of hazardous organic pollutants in groundwater located close to solid waste landfills. Eighty-two environmental contaminants, including 16 polycyclic aromatic hydrocarbons (PAHs), 20 volatile organic compounds (VOCs), 29 polychlorinated biphenyls (PCBs), 7 dioxins (polychlorinated dibenzo-p-dioxins, PCDDs) and 10 furans (polychlorinated dibenzofurans, PCDFs) were monitored in areas characterised by different geological environments surrounding three municipal solid waste landfills (Palermo, Siculiana and Ragusa) in Sicily (Italy) in three sampling campaigns. The total concentrations of the 16 PAHs were always below the legal threshold. Overall, the Fl/Fl + Py diagnostic ratio revealed that PAHs had a petrogenic origin. VOC levels, except for two notable exceptions near Palermo landfill, were always below the legal limit. As concerns PCB levels, several samples were found positive with levels exceeding the legal limits. It is worth noting that the % PCB distribution differs from that of commercial compositions. In parallel, some samples of groundwater containing PCDDs and PCDFs exceeding the legal threshold were also found. Among the 17 congeners monitored, the most abundant were the highest molecular weight ones

    Niche divergence facilitated by fine-scale ecological partitioning in a recent cichlid fish adaptive radiation

    Get PDF
    Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype-environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large-scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi
    • …
    corecore