7 research outputs found

    Peripheral Progenitor Cell Graft in the Rat: A Technique of Graft Processing

    Get PDF
    The aim of this study was to establish a procedure for blood progenitor cell graft processing in rats.  As a first step the mobilization protocol was optimized. The second step was dedicated to define the optimal  source for subsequent graft manufacturing: either peripheral blood or spleen. The third step was  designed to establish a protocol for purification of stem cells. The best mobilization results in terms of white blood cell count, granulocyte colony forming units (CFUG)  and CD90 positive progenitor cells were obtained after pre-treatment of the donors for 5 days with  recombinant human granulocyte colony stimulating factor (100 μg/kg) in combination with murine stem  cell factor (33 μg/kg). Splenectomy prior to mobilization increased the yield of stem cells from peripheral blood. The numbers of  CD90-positive progenitor cells recovered from the spleen of one rat after stem cell mobilization were sufficient  to generate one stem cell graft. Grafts containing 1 x 106 progenitor cells – and thus sufficient for transplantation - were obtained after Tcell  depletion and positive selection of CD90 positive cells. The grafts were characterized and showed a  purity exceeding 70%, a T-cell depletion of 3.6 log10 and a 3-fold increase in CFU-G compared to the yield  post mobilization.

    Diagnostic, Clinical and Post-SARS-CoV-2 Scenarios in Cancer Patients with SARS-CoV-2: Retrospective Analysis in Three German Cancer Centers.

    Get PDF
    Oncologists face challenges in the management of SARS-CoV-2 infections and post-SARS-CoV-2 cancer treatment. We analyzed diagnostic, clinical and post-SARS-CoV-2 scenarios in patients from three German cancer centers with RT-PCR confirmed SARS-CoV-2 infection. Sixty-three patients with SARS-CoV-2 and hematologic or solid neoplasms were included. Thirty patients were initially asymptomatic, 10 of whom developed COVID-19 symptoms subsequently. Altogether 20 (32%) patients were asymptomatic, 18 (29%) had mild, 12 (19%) severe and 13 (20%) critical courses. Lymphocytopenia increased risk of severe/critical COVID-19 three-fold (p = 0.015). Asymptomatic course was not associated with age, remission status, therapies or co-morbidities. Secondary bacterial infection accompanied more than one third of critical COVID-19 cases. Treatment was delayed post-SARS-CoV-2 in 46 patients, 9 of whom developed progressive disease (PD). Cancer therapy was modified in 8 SARS-CoV-2 survivors because of deteriorating performance or PD. At the last follow-up, 17 patients had died from COVID-19 (n = 8) or PD (n = 9) giving an estimated 73% four-month overall survival rate. SARS-CoV-2 infection has a heterogenous course in cancer patients. Lymphocytopenia carries a significant risk of severe/critical COVID-19. SARS-CoV-2 disruption of therapy is as serious as SARS-CoV-2 infection itself. Careful surveillance will allow early restart of the anti-cancer treatment

    Isatuximab, carfilzomib, lenalidomide, and dexamethasone (Isa-KRd) in front-line treatment of high-risk multiple myeloma: interim analysis of the GMMG-CONCEPT trial

    No full text
    Persistence of malignant clones is a major determinant of adverse outcome in patients with hematologic malignancies. Despite the fact that the majority of patients with acute myeloid leukemia (AML) achieve complete remission after chemotherapy, a large proportion of them relapse as a result of residual malignant cells. These persistent clones have a competitive advantage and can re-establish disease. Therefore, targeting strategies that specifically diminish cell competition of malignant cells while leaving normal cells unaffected are clearly warranted. Recently, our group identified YBX1 as a mediator of disease persistence in JAK2-mutated myeloproliferative neoplasms. The role of YBX1 in AML, however, remained so far elusive. Here, inactivation of YBX1 confirms its role as an essential driver of leukemia development and maintenance. We identify its ability to amplify the translation of oncogenic transcripts, including MYC, by recruitment to polysomal chains. Genetic inactivation of YBX1 disrupts this regulatory circuit and displaces oncogenic drivers from polysomes, with subsequent depletion of protein levels. As a consequence, leukemia cells show reduced proliferation and are out-competed in vitro and in vivo, while normal cells remain largely unaffected. Collectively, these data establish YBX1 as a specific dependency and therapeutic target in AML that is essential for oncogenic protein expression

    Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype

    Get PDF
    Among acute myeloid leukemia (AML) patients with a normal karyotype (CN-AML), NPM1 and CEBPA mutations define World Health Organization 2008 provisional entities accounting for approximately 60% of patients, but the remaining 40% are molecularly poorly characterized. Using whole-exome sequencing of one CN-AML patient lacking mutations in NPM1, CEBPA, FLT3-ITD, IDH1, and MLL-PTD, we newly identified a clonal somatic mutation in BCOR (BCL6 corepressor), a gene located on chromosome Xp11.4. Further analyses of 553 AML patients showed that BCOR mutations occurred in 3.8% of unselected CN-AML patients and represented a substantial fraction (17.1%) of CN-AML patients showing the same genotype as the AML index patient subjected to whole-exome sequencing. BCOR somatic mutations were: (1) disruptive events similar to the germline BCOR mutations causing the oculo-facio-cardiodental genetic syndrome; (2) associated with decreased BCOR mRNA levels, absence of full-length BCOR, and absent or low expression of a truncated BCOR protein; (3) virtually mutually exclusive with NPM1 mutations; and (4) frequently associated with DNMT3A mutations, suggesting cooperativity among these genetic alterations. Finally, BCOR mutations tended to be associated with an inferior outcome in a cohort of 422 CN-AML patients (25.6% vs 56.7% overall survival at 2 years; P = .032). Our results for the first time implicate BCOR in CN-AML pathogenesis. (Blood. 2011;118(23):6153-6163

    Sequential high-dose cytarabine and mitoxantrone (S-HAM) versus standard double induction in acute myeloid leukemia—a phase 3 study

    No full text
    Dose-dense induction with the S-HAM regimen was compared to standard double induction therapy in adult patients with newly diagnosed acute myeloid leukemia. Patients were centrally randomized (1:1) between S-HAM (2nd chemotherapy cycle starting on day 8 - dose-dense) and double induction with TAD-HAM or HAM(-HAM) (2nd cycle starting on day 21 - standard). 387 evaluable patients were randomly assigned to S-HAM (N - 203) and to standard double induction (N - 184). The primary endpoint overall response rate (ORR) consisting of complete remission (CR) and incomplete remission (CRi) was not significantly different (P = 0.202) between S-HAM (77%) and double induction (72%). The median overall survival was 35 months after S-HAM and 25 months after double induction (P = 0.323). Duration of critical leukopenia was significantly reduced after S-HAM (median 29 days) versus double induction (median 44 days)-P < 0.001. This translated into a significantly shortened duration of hospitalization after S-HAM (median 37 days) as compared to standard induction (median 49 days)-P < 0.001. In conclusion, dose-dense induction therapy with the S-HAM regimen shows favorable trends but no significant differences in ORR and OS compared to standard double induction. S-HAM significantly shortens critical leukopenia and the duration of hospitalization by 2 weeks
    corecore