159 research outputs found
Enhanced soliton interactions by inhomogeneous nonlocality and nonlinearity
We address the interactions between optical solitons in the system with
longitudinally varying nonlocality degree and nonlinearity strength. We
consider a physical model describing light propagation in nematic liquid
crystals featuring a strongly nonlocal nonlinear response. We reveal that the
variation of the nonlocality and nonlinearity along the propagation direction
can substantially enhance or weaken the interaction between out-of-phase
solitons. This phenomenon manifests itself as a slowdown or acceleration of the
soliton collision dynamics in one-dimensional geometries or of the soliton
spiraling rate in bulk media. Therefore, one finds that by engineering the
nonlocality and nonlinearity variation rate one can control the output soliton
location.Comment: 22 pages, 5 figures, to appear in Physical Review
Spatially incoherent modulational instability in a non local medium
We investigate one-dimensional transverse modulational instability in a non
local medium excited with a spatially incoherent source. Employing undoped
nematic liquid crystals in a planar pre-tilted configuration, we investigate
the role of the spectral broadening induced by incoherence in conjunction with
the spatially non local molecular reorientation. The phenomenon is modeled
using the Wigner transform.Comment: 13 pages with 4 figures included. To be published in Laser Physics
Letter
Route to nonlocality and observation of accessible solitons
We develop a general theory of spatial solitons in a liquid crystalline
medium exhibiting a nonlinearity with an arbitrary degree of effective
nonlocality. The model accounts the observability of "accessible solitons" and
establishes an important link with parametric solitons.Comment: 4 pages, 2 figure
Signal processing by opto-optical interactions between self-localized and free propagating beams in liquid crystals
The reorientational nonlinearity of nematic liquid crystals enables a
self-localized spatial soliton and its waveguide to be deflected or destroyed
by a control beam propagating across the cell. We demonstrate a simple
all-optical readdressing scheme by exploiting the lens-like perturbation
induced by an external beam on both a nematicon and a co-polarized guided
signal of different wavelength. Angular steering as large as 2.2 degrees was
obtained for control powers as low as 32mW in the near infrared
Numerical and experimental time-domain characterization of terahertz conducting polymers
A comprehensive framework for the theoretical and experimental investigation of thin conducting films for terahertz applications is presented. The electromagnetic properties of conducting polymers spin-coated on low-loss dielectric substrates are characterized by means of terahertz time-domain spectroscopy and interpreted through the Drude-Smith model. The analysis is complemented by an advanced finite-difference time-domain algorithm, which rigorously deals both with the dispersive nature of the involved materials and the extremely subwavelength thickness of the conducting films. Significant agreement is observed among experimental measurements, numerical simulations, and theoretical results. The proposed approach provides a complete toolbox for the engineering of terahertz optoelectronic devices
Nonlinear management of the angular momentum of soliton clusters
We demonstrate an original approach to acquire nonlinear control over the
angular momentum of a cluster of solitary waves. Our model, derived from a
general description of nonlinear energy propagation in dispersive media, shows
that the cluster angular momentum can be adjusted by acting on the global
energy input into the system. The phenomenon is experimentally verified in
liquid crystals by observing power-dependent rotation of a two-soliton cluster.Comment: 4 pages, 3 figure
Tracking azimuthons in nonlocal nonlinear media
We study the formation of azimuthons, i.e., rotating spatial solitons, in
media with nonlocal focusing nonlinearity. We show that whole families of these
solutions can be found by considering internal modes of classical non-rotating
stationary solutions, namely vortex solitons. This offers an exhaustive method
to identify azimuthons in a given nonlocal medium. We demonstrate formation of
azimuthons of different vorticities and explain their properties by considering
the strongly nonlocal limit of accessible solitons.Comment: 11 pages, 7 figure
Accessible Light Bullets via synergetic nonlinearities
We introduce a new form of stable spatio-temporal self-trapped optical
packets stemming from the interplay of local and nonlocal nonlinearities.
Pulsed self-trapped light beams in media with both electronic and molecular
nonlinear responses are addressed to prove that spatial and temporal effects
can be decoupled, allowing for independent tuning. We numerically demonstrate
that (3+1)D light bullets and anti-bullets, i. e. bright and dark temporal
solitons embedded in stable (2+1)D nonlocal spatial solitons, can be generated
in reorientational media under experimentally feasible conditions.Comment: 17 pages, 4 figures A scale error in the index perturbation vs
average power dependence has been fixe
Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique
Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 μm) directly in its emission plane
Curved optical solitons subject to transverse acceleration in reorientational soft matter
We demonstrate that optical spatial solitons with non-rectilinear trajectories can be made to propagate in a uniaxial dielectric with a transversely modulated orientation of the optic axis. Exploiting the reorientational nonlinearity of nematic liquid crystals and imposing a linear variation of the background alignment of the molecular director, we observe solitons whose trajectories have either a monotonic or a non-monotonic curvature in the observation plane of propagation, depending on either the synergistic or counteracting roles of wavefront distortion and birefringent walk-off, respectively. The observed effect is well modelled in the weakly nonlinear regime using momentum conservation of the self-collimated beams in the presence of the spatial nonlocality of the medium response. Since reorientational solitons can act as passive waveguides for other weak optical signals, these results introduce a wealth of possibilities for all-optical signal routing and light-induced photonic interconnects
- …