205 research outputs found

    Thermodynamics of a Kerr Newman de Sitter Black Hole

    Get PDF
    We compute the conserved quantities of the four-dimensional Kerr-Newman-dS (KNdS) black hole through the use of the counterterm renormalization method, and obtain a generalized Smarr formula for the mass as a function of the entropy, the angular momentum and the electric charge. The first law of thermodynamics associated to the cosmological horizon of KNdS is also investigated. Using the minimal number of intrinsic boundary counterterms, we consider the quasilocal thermodynamics of asymptotic de Sitter Reissner-Nordstrom black hole, and find that the temperature is equal to the product of the surface gravity (divided by 2π2\pi) and the Tolman redshift factor. We also perform a quasilocal stability analysis by computing the determinant of Hessian matrix of the energy with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles and obtain a complete set of phase diagrams. We then turn to the quasilocal thermodynamics of four-dimensional Kerr-Newman-de Sitter black hole for virtually all possible values of the mass, the rotation and the charge parameters that leave the quasilocal boundary inside the cosmological event horizon, and perform a quasilocal stability analysis of KNdS black hole.Comment: REVTEX4, 12 pages, 12 figures, references added and some points in Sec II have been clarified, version to appear in Can. J. Phy

    A deep 1.4 GHz survey of the J1030 equatorial field: a new window on radio source populations across cosmic time

    Full text link
    We present deep L-Band observations of the equatorial field centered on the z=6.3 SDSS QSO, reaching a 1 sigma sensitivity of ~2.5 uJy at the center of the field. We extracted a catalog of 1489 radio sources down to a flux density of ~12.5 uJy (5 sigma) over a field of view of ~ 30' diameter. We derived the source counts accounting for catalog reliability and completeness, and compared them with others available in the literature. Our source counts are among the deepest available so far, and, overall, are consistent with recent counts' determinations and models. We detected for the first time in the radio band the SDSS J1030+0524 QSO (26 +/- 5 uJy). We derived its optical radio loudness R_O = 0.62 +/- 0.12, which makes it the most radio quiet AGN at z >~ 6 discovered so far and detected at radio wavelengths. We unveiled extended diffuse radio emission associated with the lobes of a bright FRII radio galaxy located close to the center of the J1030 field, which is likely to become the future BCG of a protocluster at z=1.7. The lobes' complex morphology, coupled with the presence of X-ray diffuse emission detected around the FRII galaxy lobes, may point toward an interaction between the radio jets and the external medium. We also investigated the relation between radio and X-ray luminosity for a sample of 243 X-ray-selected objects obtained from 500 ks Chandra observations of the same field, and spanning a wide redshift range (0 ~< z ~< 3). Focused on sources with a spectroscopic redshift and classification, we found that sources hosted by ETG and AGN follow Log(L_R)/Log(L_X) linear correlations with slopes of ~0.6 and ~0.8, respectively. This is interpreted as a likely signature of different efficiency in the accretion process. Finally, we found that most of these sources (>~87%) show a radio-to-X-ray radio loudness R_X < -3.5, classifying these objects as radio quiet.Comment: 18 pages, 15 figures, 5 table. Accepted for publication in A&

    A deep 1.4 GHz survey of the J1030 equatorial field: A new window on radio source populations across cosmic time

    Get PDF
    We present deep L-Band observations of the equatorial field centered on the z = 6.3 Sloan Digital Sky Survey (SDSS) quasar (QSO). This field is rich of multiwavelength photometry and spectroscopy data, making it an ideal laboratory for galaxy evolution studies. Our observations reach a 1σ sensitivity of ~2.5 μJy at the center of the field. We extracted a catalog of 1489 radio sources down to a flux density of ~12.5 μJy (5σ) over a field of view of ~ 30′ diameter. We derived the source counts accounting for catalog reliability and completeness, and compared them with others available in the literature. Our source counts are among the deepest available so far, and, overall, are consistent with recent counts'determinations and models. They show a slight excess at flux densities ~50 μJy, possibly associated with the presence of known overdensities in the field. We detected for the first time in the radio band the SDSS J1030+0524 QSO (26 ± 5 μJy, 8σ significance level). For this object, we derived an optical radio loudness RO = 0.62±0.12, which makes it the most radio quiet among active galactic nuclei (AGN) discovered so far at z ≳ 6 and detected at radio wavelengths. We unveiled extended diffuse radio emission associated with the lobes of a bright Fanaroff-Riley type II (FRII) radio galaxy located close to the center of the J1030 field, which is likely to become the future brightest cluster galaxy of a protocluster at z = 1.7. The lobes'complex morphology, coupled with the presence of X-ray diffuse emission detected around the FRII galaxy lobes, may point toward an interaction between the radio jets and the external medium. We also investigated the relation between radio and X-ray luminosity for a sample of 243 X-ray-selected objects obtained from 500 ks Chandra observations of the same field, and spanning a wide redshift range (0 ≲ z ≲ 3). Focused on sources with a spectroscopic redshift and classification, we found that sources hosted by early-type galaxies and AGN follow log(LR)/log(LX) linear correlations with slopes of ~0.6 and ~0.8, respectively. This is interpreted as a likely signature of different efficiency in the accretion process. Finally, we found that most of these sources (≳87%) show a radio-to-X-ray radio loudness RX ≲ -3.5, classifying these objects as radio quiet

    Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization

    Full text link
    We investigate the critical behaviour of charged and rotating AdS black holes in d spacetime dimensions, including effects from non-linear electrodynamics via the Born-Infeld action, in an extended phase space in which the cosmological constant is interpreted as thermodynamic pressure. For Reissner-Nordstrom black holes we find that the analogy with the Van der Walls liquid-gas system holds in any dimension greater than three, and that the critical exponents coincide with those of the Van der Waals system. We find that neutral slowly rotating black holes in four space-time dimensions also have the same qualitative behaviour. However charged and rotating black holes in three spacetime dimensions do not exhibit critical phenomena. For Born-Infeld black holes we define a new thermodynamic quantity B conjugate to the Born-Infeld parameter b that we call Born-Infeld vacuum polarization. We demonstrate that this quantity is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.Comment: 23 pages, 32 figures, v2: minor changes, upgraded reference

    Thermodynamics of d-dimensional charged rotating black brane and AdS/CFT correspondence

    Get PDF
    We compute the Euclidean actions of a dd-dimensional charged rotating black brane both in the canonical and the grand-canonical ensemble through the use of the counterterms renormalization method, and show that the logarithmic divergencies associated with the Weyl anomalies and matter field vanish. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta, and the electric charge, and show that these quantities satisfy the first law of thermodynamics. Using the conserved quantities and the Euclidean actions, we calculate the thermodynamics potentials of the system in terms of the temperature, angular velocities, and electric potential both in the canonical and grand-canonical ensembles. We also perform a stability analysis in these two ensembles, and show that the system is thermally stable. This is commensurate with the fact that there is no Hawking-Page phase transition for a black object with zero curvature horizon. Finally, we obtain the logarithmic correction of the entropy due to the thermal fluctuation around the equilibrium.Comment: REVTEX4, 15 pages, 1 figur

    The deep Chandra survey in the SDSS J1030+0524 field

    Get PDF
    We present the X-ray source catalog for the ∼479 ks Chandra exposure of the SDSS J1030+0524 field, which is centered on a region that shows the best evidence to date of an overdensity around a z > 6 quasar, and also includes a galaxy overdensity around a Compton-thick Fanaroff-Riley type II (FRII) radio galaxy at z = 1.7. Using wavdetect for initial source detection and ACIS Extract for source photometry and significance assessment, we create preliminary catalogs of sources that are detected in the full (0.5-7.0 keV), soft (0.5-2.0 keV), and hard (2-7 keV) bands, respectively. We produce X-ray simulations that mirror our Chandra observation to filter our preliminary catalogs and achieve a completeness level of > 91% and a reliability level of ∼95% in each band. The catalogs in the three bands are then matched into a final main catalog of 256 unique sources. Among them, 244, 193, and 208 are detected in the full, soft, and hard bands, respectively. The Chandra observation covers a total area of 335 arcmin2 and reaches flux limits over the central few square arcmins of ∼3 × 10-16, 6 × 10-17, and 2 × 10-16 erg cm-2 s-1 in the full, soft, and hard bands, respectively This makes J1030 field the fifth deepest extragalactic X-ray survey to date. The field is part of the Multiwavelength Survey by Yale-Chile (MUSYC), and is also covered by optical imaging data from the Large Binocular Camera (LBC) at the Large Binocular Telescope (LBT), near-infrared imaging data from the Canada France Hawaii Telescope WIRCam (CFHT/WIRCam), and Spitzer IRAC. Thanks to its dense multi-wavelength coverage, J1030 represents a legacy field for the study of large-scale structures around distant accreting supermassive black holes. Using a likelihood ratio analysis, we associate multi-band (r, z, J, and 4.5  μm) counterparts for 252 (98.4%) of the 256 Chandra sources, with an estimated reliability of 95%. Finally, we compute the cumulative number of sources in each X-ray band, finding that they are in general agreement with the results from the Chandra Deep Fields.We acknowledge the referee for a prompt and constructive report. We acknowledge financial contribution from the agreement ASI-INAF n. 2017-14-H.O. We thank P. Broos for providing great support for the analysis of our simulations with AE, and H. M. Günther for the support provided for using MARX. We also thank B. Luo for providing us the log(N)–log(S) of the 7Ms CDF-S. FV acknowledges financial support from CONICYT and CASSACA through the Fourth call for tenders of the CAS-CONICYT Fund, and CONICYT grants Basal-CATA AFB-170002. DM and MA acknowledge support by grant number NNX16AN49G issued through the NASA Astrophysics Data Analysis Program (ADAP). Further support was provided by the Faculty Research Fund (FRF) of Tufts University

    Reduced haemodynamic response in the ageing visual cortex measured by absolute fNIRS

    Get PDF
    The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds

    Global embeddings of scalar-tensor theories in (2+1)-dimensions

    Get PDF
    We obtain (3+3)- or (3+2)-dimensional global flat embeddings of four uncharged and charged scalar-tensor theories with the parameters B or L in the (2+1)-dimensions, which are the non-trivially modified versions of the Banados-Teitelboim-Zanelli (BTZ) black holes. The limiting cases B=0 or L=0 exactly are reduced to the Global Embedding Minkowski Space (GEMS) solution of the BTZ black holes.Comment: 19 pages, 2 figure

    Higher dimensional flat embeddings of (2+1) dimensional black holes

    Full text link
    We obtain the higher dimensional global flat embeddings of static, rotating, and charged BTZ black holes. On the other hand, we also study the similar higher dimensional flat embeddings of the (2+1) de Sitter black holes which are the counterparts of the anti-de Sitter BTZ black holes. As a result, the charged dS black hole is shown to be embedded in (3+2) GEMS, contrast to the charged BTZ one having (3+3) GEMS structure.Comment: 16pages, revtex, no figures, to appear in Phys. Rev.

    The deep Chandra survey in the SDSS J1030+0524 field

    Get PDF
    We present the X-ray source catalog for the 3c479 ks Chandra exposure of the SDSS J1030+0524 field, which is centered on a region that shows the best evidence to date of an overdensity around a z &gt; 6 quasar, and also includes a galaxy overdensity around a Compton-thick Fanaroff-Riley type II (FRII) radio galaxy at z = 1.7. Using wavdetect for initial source detection and ACIS Extract for source photometry and significance assessment, we create preliminary catalogs of sources that are detected in the full (0.5-7.0 keV), soft (0.5-2.0 keV), and hard (2-7 keV) bands, respectively. We produce X-ray simulations that mirror our Chandra observation to filter our preliminary catalogs and achieve a completeness level of &gt; 91% and a reliability level of 3c95% in each band. The catalogs in the three bands are then matched into a final main catalog of 256 unique sources. Among them, 244, 193, and 208 are detected in the full, soft, and hard bands, respectively. The Chandra observation covers a total area of 335 arcmin2 and reaches flux limits over the central few square arcmins of 3c3 7 10-16, 6 7 10-17, and 2 7 10-16 erg cm-2 s-1 in the full, soft, and hard bands, respectively This makes J1030 field the fifth deepest extragalactic X-ray survey to date. The field is part of the Multiwavelength Survey by Yale-Chile (MUSYC), and is also covered by optical imaging data from the Large Binocular Camera (LBC) at the Large Binocular Telescope (LBT), near-infrared imaging data from the Canada France Hawaii Telescope WIRCam (CFHT/WIRCam), and Spitzer IRAC. Thanks to its dense multi-wavelength coverage, J1030 represents a legacy field for the study of large-scale structures around distant accreting supermassive black holes. Using a likelihood ratio analysis, we associate multi-band (r, z, J, and 4.5\u2006 \u3bcm) counterparts for 252 (98.4%) of the 256 Chandra sources, with an estimated reliability of 95%. Finally, we compute the cumulative number of sources in each X-ray band, finding that they are in general agreement with the results from the Chandra Deep Fields
    corecore