278 research outputs found

    Transglutaminase 2 limits the extravasation and the resultant myocardial fibrosis associated with factor XIII-A deficiency

    Get PDF
    Background and aims Transglutaminase (TG) 2 and Factor (F) XIII-A have both been implicated in cardiovascular protection and repair. This study was designed to differentiate between two competing hypotheses: that TG2 and FXIII-A mediate these functions in mice by fulfilling separate roles, or that they act redundantly in this respect. Methods Atherosclerosis was assessed in brachiocephalic artery plaques of fat-fed mixed strain apolipoprotein (Apo)e deficient mice that lacked either or both transglutaminases. Cardiac fibrosis was assessed both in the mixed strain mice and also in C57BL/6J Apoe expressing mice lacking either or both transglutaminases. Results No difference was found in the density of buried fibrous caps within brachiocephalic plaques from mice expressing or lacking these transglutaminases. Cardiac fibrosis developed in both Apoe/F13a1 double knockout and F13a1 single knockout mice, but not in Tgm2 knockout mice. However, concomitant Tgm2 knockout markedly increased fibrosis, as apparent in both Apoe/Tgm2/F13a1 knockout and Tgm2/F13a1 knockout mice. Amongst F13a1 knockout and Tgm2/F13a1 knockout mice, the extent of fibrosis correlated with hemosiderin deposition, suggesting that TG2 limits the extravasation of blood in the myocardium, which in turn reduces the pro-fibrotic stimulus. The resulting fibrosis was interstitial in nature and caused only minor changes in cardiac function. Conclusions These studies confirm that FXIII-A and TG2 fulfil different roles in the mouse myocardium. FXIII-A protects against vascular leakage while TG2 contributes to the stability or repair of the vasculature. The protective function of TG2 must be considered when designing clinical anti-fibrotic therapies based upon FXIII-A or TG2 inhibition

    Massively parallel computing on an organic molecular layer

    Full text link
    Current computers operate at enormous speeds of ~10^13 bits/s, but their principle of sequential logic operation has remained unchanged since the 1950s. Though our brain is much slower on a per-neuron base (~10^3 firings/s), it is capable of remarkable decision-making based on the collective operations of millions of neurons at a time in ever-evolving neural circuitry. Here we use molecular switches to build an assembly where each molecule communicates-like neurons-with many neighbors simultaneously. The assembly's ability to reconfigure itself spontaneously for a new problem allows us to realize conventional computing constructs like logic gates and Voronoi decompositions, as well as to reproduce two natural phenomena: heat diffusion and the mutation of normal cells to cancer cells. This is a shift from the current static computing paradigm of serial bit-processing to a regime in which a large number of bits are processed in parallel in dynamically changing hardware.Comment: 25 pages, 6 figure

    The protease associated (PA) domain in ScpA from Streptococcus pyogenes plays a role in substrate recruitment

    Get PDF
    Annually, over 18 million disease cases and half a million deaths worldwide are estimated to be caused by Group A Streptococcus. ScpA (or C5a peptidase) is a well characterised member of the cell enveleope protease family, which possess a S8 subtilisin-like catalytic domain and a shared multi-domain architecture. ScpA cleaves complement factors C5a and C3a, impairing the function of these critical anaphylatoxins and disrupts complement-mediated innate immunity. Although the high resolution structure of ScpA is known, the details of how it recognises its substrate are only just emerging. Previous studies have identified a distant exosite on the 2nd fibronectin domain that plays an important role in recruitment via an interaction with the substrate core. Here, using a combination of solution NMR spectroscopy, mutagenesis with functional assays and computational approaches we identify a second exosite within the protease-associated (PA) domain. We propose a model in which the PA domain assists optimal delivery of the substrate's C terminus to the active site for cleavage

    Cre/lox Studies Identify Resident Macrophages as the Major Source of Circulating Coagulation Factor XIII-A

    Get PDF
    Objective— To establish the cellular source of plasma factor (F)XIII-A. Approach and Results— A novel mouse floxed for the F13a1 gene, FXIII-Aflox/flox (Flox), was crossed with myeloid- and platelet-cre–expressing mice, and cellular FXIII-A mRNA expression and plasma and platelet FXIII-A levels were measured. The platelet factor 4-cre.Flox cross abolished platelet FXIII-A and reduced plasma FXIII-A to 23±3% (P<0.001). However, the effect of platelet factor 4-cre on plasma FXIII-A was exerted outside of the megakaryocyte lineage because plasma FXIII-A was not reduced in the Mpl−/− mouse, despite marked thrombocytopenia. In support of this, platelet factor 4-cre depleted FXIII-A mRNA in brain, aorta, and heart of floxed mice, where FXIII-Apos cells were identified as macrophages as they costained with CD163. In the integrin αM-cre.Flox and the double copy lysozyme 2-cre.cre.Flox crosses, plasma FXIII-A was reduced to, respectively, 75±5% (P=0.003) and 30±7% (P<0.001), with no change in FXIII-A content per platelet, further consistent with a macrophage origin of plasma FXIII-A. The change in plasma FXIII-A levels across the various mouse genotypes mirrored the change in FXIII-A mRNA expression in aorta. Bone marrow transplantation of FXIII-A+/+ bone marrow into FXIII-A−/− mice both restored plasma FXIII-A to normal levels and replaced aortic and cardiac FXIII-A mRNA, while its transplantation into FXIII-A+/+ mice did not increase plasma FXIII-A levels, suggesting that a limited population of niches exists that support FXIII-A-releasing cells. Conclusions— This work suggests that resident macrophages maintain plasma FXIII-A and exclude the platelet lineage as a major contributor

    Visible and Invisible Trends in Black Men's Health: Pitfalls and Promises for Addressing Racial, Ethnic, and Gender Inequities in Health

    Get PDF
    Over the past two decades, there has been growing interest in improving black men's health and the health disparities affecting them. Yet, the health of black men consistently ranks lowest across nearly all groups in the United States. Evidence on the health and social causes of morbidity and mortality among black men has been narrowly concentrated on public health problems (e.g., violence, prostate cancer, and HIV/AIDS) and determinants of health (e.g., education and male gender socialization). This limited focus omits age-specific leading causes of death and other social determinants of health, such as discrimination, segregation, access to health care, employment, and income. This review discusses the leading causes of death for black men and the associated risk factors, as well as identifies gaps in the literature and presents a racialized and gendered framework to guide efforts to address the persistent inequities in health affecting black men

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Structural Insights from Binding Poses of CCR2 and CCR5 with Clinically Important Antagonists: A Combined In Silico Study

    Get PDF
    Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å), we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2) and Glu283 (CCR5) are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design

    Theiler's Murine Encephalomyelitis Virus as a Vaccine Candidate for Immunotherapy

    Get PDF
    The induction of sterilizing T-cell responses to tumors is a major goal in the development of T-cell vaccines for treating cancer. Although specific components of anti-viral CD8+ immunity are well characterized, we still lack the ability to mimic viral CD8+ T-cell responses in therapeutic settings for treating cancers. Infection with the picornavirus Theiler's murine encephalomyelitis virus (TMEV) induces a strong sterilizing CD8+ T-cell response. In the absence of sterilizing immunity, the virus causes a persistent infection. We capitalized on the ability of TMEV to induce strong cellular immunity even under conditions of immune deficiency by modifying the virus to evaluate its potential as a T-cell vaccine. The introduction of defined CD8+ T-cell epitopes into the leader sequence of the TMEV genome generates an attenuated vaccine strain that can efficiently drive CD8+ T-cell responses to the targeted antigen. This virus activates T-cells in a manner that is capable of inducing targeted tissue damage and glucose dysregulation in an adoptive T-cell transfer model of diabetes mellitus. As a therapeutic vaccine for the treatment of established melanoma, epitope-modified TMEV can induce strong cytotoxic T-cell responses and promote infiltration of the T-cells into established tumors, ultimately leading to a delay in tumor growth and improved survival of vaccinated animals. We propose that epitope-modified TMEV is an excellent candidate for further development as a human T-cell vaccine for use in immunotherapy

    An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches.</p> <p>Results</p> <p>In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA) will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay.</p> <p>Conclusions</p> <p>By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at <url>http://www.laurenzi.net</url>.</p
    corecore