23,745 research outputs found
Recommended from our members
Widespread evidence for heterogeneous accretion of the terrestrial planets and planetisimals
The abundance and relative proportion of highly siderophile elements (HSEs) in Earthâs mantle deviate from those predicted by low-pressure equilibrium partitioning between metal and silicate during formation of the core. For many elements, high-pressure equilibration in a deep molten silicate layer (or âmagma oceanâ) may account for this discrepancy [1], but some highly siderophile element abundances demand the late addition, a âlate veneerâ, of extraterrestrial material (i.e. heterogeneous accretion) after core formation was complete [2]. Siderophile elements in smaller asteroidal bodies will not be affected by high-pressure metal-silicate equilibration and so, with highly efficient core formation [3] and if a âlate veneerâ is absent, significant differences in the proportions of HSEs can be anticipated. Here we present new HSE abundance and 187Os/188Os isotope data for basaltic meteorites, the HEDs (howardites, eucrites and diogenites thought to sample the asteroid 4 Vesta), anomalous eucrites (considered to be from distinct Vesta-like parent bodies) angrites and aubrites (from unidentified parent bodies) and SNCs (thought to be from Mars). Our data, taken with those for lunar rocks [4], demonstrate that these igneous meteorites all formed from mantle sources that possessed chondritic (i.e. primitive solar system) elemental and isotope compositions, indicating that late accretion is not unique to Earth, but is a common feature of differentiated planets and asteroidal bodies. Variations in the total HSE abundance suggest that the proportion of âlate veneerâ added is a simple consequence of the size of each body (cross-section and/or gravitational-attraction), and may account for the volatile element budget, and the oxidationstate of Earth, Mars, the Moon and Vesta
The development of direct payments in the UK: implications for social justice
Direct payments have been heralded by the disability movement as an important means to
achieving independent living and hence greater social justice for disabled people through
enhanced recognition as well as financial redistribution. Drawing on data from the ESRC
funded project Disabled People and Direct Payments: A UK Comparative Perspective,
this paper presents an analysis of policy and official statistics on use of direct payments
across the UK. It is argued that the potential of direct payments has only partly been
realised as a result of very low and uneven uptake within and between different parts
of the UK. This is accounted for in part by resistance from some Labour-controlled local
authorities, which regard direct payments as a threat to public sector jobs. In addition,
access to direct payments has been uneven across impairment groups. However, from a
very low base there has been a rapid expansion in the use of direct payments over the
past three years. The extent to which direct payments are able to facilitate the ultimate
goal of independent living for disabled people requires careful monitoring
Research on the structural performance of large rocket booster subjected to longitudinal excitations
Dynamic structural behavior of large booster rocket subjected to longitudinal excitations - analysis of theoretical mode
Recommended from our members
Comprehensive Organic Analysis of Antartic Micrometeorites
Introduction: Micrometeorites (MMs) are thought to be significant contributors of organic material to the early Earth [1], and a variety of techniques have been employed to identify their organic composition [2-6]. These include the identification of key organic groups using combinations of infrared, energy dispersive Xray, electron energy loss and Raman spectroscopy and scanning transmission X-ray microscopy [2-4], highlighting similarities between that of MMs and carbonaceous chondrites.
Few studies, however, have focused on the characterisation of individual micrometeoritic organic components. Microscopic L2MS has been used to identify up to C5 polycyclic aromatic hydrocarbons and their alkyl derivatives [5]. A combination of ionexchange chromatography and fluorimetric detection has also been successful in identifying a number of protein amino acids including glycine and alanine [6].
We have previously reported a method to analyse ?g-sized quantities of extraterrestrial materials, with prior application to assessing organic volatile release from MM atmospheric entry heating simulations [7]. In this study we utilise this technique to characterise the organic composition of Antarctic terrestrial particles and MMs collected in 1994 from Cap-Prudhomme [8]
- âŠ