21 research outputs found

    Topological Analysis of Small Leucine-Rich Repeat Proteoglycan Nyctalopin

    Get PDF
    Nyctalopin is a small leucine rich repeat proteoglycan (SLRP) whose function is critical for normal vision. The absence of nyctalopin results in the complete form of congenital stationary night blindness. Normally, glutamate released by photoreceptors binds to the metabotropic glutamate receptor type 6 (GRM6), which through a G-protein cascade closes the non-specific cation channel, TRPM1, on the dendritic tips of depolarizing bipolar cells (DBCs) in the retina. Nyctalopin has been shown to interact with TRPM1 and expression of TRPM1 on the dendritic tips of the DBCs is dependent on nyctalopin expression. In the current study, we used yeast two hybrid and biochemical approaches to investigate whether murine nyctalopin was membrane bound, and if so by what mechanism, and also whether the functional form was as a homodimer. Our results show that murine nyctalopin is anchored to the plasma membrane by a single transmembrane domain, such that the LRR domain is located in the extracellular space

    Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse

    Get PDF
    Leopard complex spotting is a group of white spotting patterns in horses caused by an incompletely dominant gene (LP) where homozygotes (LP/LP) are also affected with congenital stationary night blindness. Previous studies implicated Transient Receptor Potential Cation Channel, Subfamily M, Member 1 (TRPM1) as the best candidate gene for both CSNB and LP. RNA-Seq data pinpointed a 1378 bp insertion in intron 1 of TRPM1 as the potential cause. This insertion, a long terminal repeat (LTR) of an endogenous retrovirus, was completely associated with LP, testing 511 horses (χ²=1022.00, p<<0.0005), and CSNB, testing 43 horses (χ2=43, p<<0.0005). The LTR was shown to disrupt TRPM1 transcription by premature poly-adenylation. Furthermore, while deleterious transposable element insertions should be quickly selected against the identification of this insertion in three ancient DNA samples suggests it has been maintained in the horse gene pool for at least 17,000 years. This study represents the first description of an LTR insertion being associated with both a pigmentation phenotype and an eye disorder.Rebecca R. Bellone … David L. Adelson, Sim Lin Lim … et al
    corecore