24 research outputs found

    A single site in human β-hexosaminidase A binds both 6-sulfate-groups on hexosamines and the sialic acid moiety of GM2 ganglioside

    Get PDF
    AbstractHuman β-hexosaminidase A (Hex A) (αβ) is composed of two subunits whose primary structures are ∼60% identical. Deficiency of either subunit results in severe neurological disease due to the storage of GM2 ganglioside; Tay–Sachs disease, α deficiency, and Sandhoff disease, β deficiency. Whereas both subunits contain active sites only the α-site can efficiently bind negatively charged 6-sulfated hexosamine substrates and GM2 ganglioside. We have recently identified the αArg424 as playing a critical role in the binding of 6-sulfate-containing substrates, and βAsp452 as actively inhibiting their binding. To determine if these same residues affect the binding of the sialic acid moiety of GM2 ganglioside, an αArg424Gln form of Hex A was expressed and its kinetics analyzed using the GM2 activator protein:[3H]-GM2 ganglioside complex as a substrate. The mutant showed a ∼3-fold increase in its Km for the complex. Next a form of Hex B (ββ) containing a double mutation, βAspLeu453AsnArg (duplicating the α-aligning sequences), was expressed. As compared to the wild type (WT), the mutant exhibited a >30-fold increase in its ability to hydrolyze a 6-sulfated substrate and was now able to hydrolyze GM2 ganglioside when the GM2 activator protein was replaced by sodium taurocholate. Thus, this α-site is critical for binding both types of negatively charge substrates

    Sex differences in cardiometabolic risk factors, pharmacological treatment and risk factor control in type 2 diabetes: findings from the Dutch Diabetes Pearl cohort

    Get PDF
    Introduction Sex differences in cardiometabolic risk factors and their management in type 2 diabetes (T2D) have not been fully identified. Therefore, we aimed to examine differences in cardiometabolic risk factor levels, pharmacological treatment and achievement of risk factor control between women and men with T2D. Research design and methods Cross-sectional data from the Dutch Diabetes Pearl cohort were used (n=6637, 40% women). Linear and Poisson regression analyses were used to examine sex differences in cardiometabolic risk factor levels, treatment, and control. Results Compared with men, women had a significantly higher body mass index (BMI) (mean difference 1.79kg/ m2 (95% CI 1.49 to 2.08)), while no differences were found in hemoglobin A1c (HbA1c) and systolic blood pressure (SBP). Women had lower diastolic blood pressure (−1.94mm Hg (95% CI −2.44 to −1.43)), higher total cholesterol (TC

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link
    corecore