376 research outputs found

    A soil-site study of western larch (Larix occidentalis Nutt) on a Waits stony loam soil

    Get PDF

    Differences in the trophic ecology of micronekton driven by diel vertical migration.

    Get PDF
    Many species of micronekton perform diel vertical migrations (DVMs), which ultimately contributes to carbon export to the deep sea. However, not all micronekton species perform DVM, and the nonmigrators, which are often understudied, have different energetic requirements that might be reflected in their trophic ecology. We analyze bulk tissue and whole animal stable nitrogen isotopic compositions (δ 15N values) of micronekton species collected seasonally between 0 and 1250 m depth to explore differences in the trophic ecology of vertically migrating and nonmigrating micronekton in the central North Pacific. Nonmigrating species exhibit depth-related increases in δ 15N values mirroring their main prey, zooplankton. Higher variance in δ 15N values of bathypelagic species points to the increasing reliance of deeper dwelling micronekton on microbially reworked, very small suspended particles. Migrators have higher δ 15N values than nonmigrators inhabiting the epipelagic zone, suggesting the consumption of material during the day at depth, not only at night when they migrate closer to the surface. Migrating species also appear to eat larger prey and exhibit a higher range of variation in δ 15N values seasonally than nonmigrators, likely because of their higher energy needs. The dependence on material at depth enriched in 15N relative to surface particles is higher in migratory fish that ascend only to the lower epipelagic zone. Our results confirm that stark differences in the food habits and dietary sources of micronekton species are driven by vertical migrations

    Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling

    Get PDF
    Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA) inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. Here we synthesize experimental results into a consistent guard cell signal transduction network for ABA-induced stomatal closure, and develop a dynamic model of this process. Our model captures the regulation of more than forty identified network components, and accords well with previous experimental results at both the pathway and whole cell physiological level. Our analysis reveals the novel predictions that the disruption of membrane depolarizability, anion efflux, actin cytoskeleton reorganization, cytosolic pH increase, the phosphatidic acid pathway or of K+ efflux through slowly activating K+ channels at the plasma membrane lead to the strongest reduction in ABA responsiveness. Initial experimental analysis assessing ABA-induced stomatal closure in the presence of cytosolic pH clamp imposed by the weak acid butyrate is consistent with model prediction. Our method can be readily applied to other biological signaling networks to identify key regulatory components in systems where quantitative information is limited.Comment: 17 pages, 8 figure

    Squeezed by a Habitat Split: Warm Ocean Conditions and Old‐forest Loss Interact to Reduce Long‐term Occupancy of a Threatened Seabird

    Get PDF
    Theory predicts that species requiring multiple habitat types simultaneously should have heightened sensitivity to anthropogenic pressures, yet tests of this prediction are especially rare. We tested whether breeding site occupancy of the threatened marbled murrelet (Brachyramphus marmoratus) was driven by the synergistic effects of nesting habitat loss in forests, and changing ocean condi- tions. We paired 70,700 murrelet surveys at 19,837 sites across 20 years from the Oregon Coast Range with annual data on the extent of old forest and biophysical ocean conditions. Dynamic occupancy models indicated that local murrelet col- onization rates were strongly reduced during warm ocean conditions with low prey availability. Landscapes that contained more old forest and were closer to the ocean showed reduced rates of local extinction. Given predictions of accel- erated ocean warming and increased global timber demand, our results suggest murrelets may continue to be imperiled by deterioration of the two habitats upon which they depend

    During photosynthetic induction, biochemical and stomatal limitations differ between Brassica crops

    Get PDF
    Interventions to increase crop radiation use efficiency rely on understanding how biochemical and stomatal limitations affect photosynthesis. When leaves transition from shade to high light, slow increases in maximum Rubisco carboxylation rate and stomatal conductance limit net CO2 assimilation for several minutes. However, as stomata open, intercellular [CO2] increases, so electron transport rate could also become limiting. Photosynthetic limitations were evaluated in three important Brassica crops: B. rapa, B. oleracea and B. napus. Measurements of induction after a period of shade showed that net CO2 assimilation by B. rapa and B. napus saturated by 10 min. A new method of analyzing limitations to induction by varying intercellular [CO2] showed this was due to co-limitation by Rubisco and electron transport. By contrast, in B. oleracea, persistent Rubisco limitation meant that CO2 assimilation was still recovering 15 min after induction. Correspondingly, B. oleracea had the lowest Rubisco total activity. The methodology developed, and its application here, shows a means to identify the basis of variation in photosynthetic efficiency in fluctuating light, which could be exploited in breeding and bioengineering to improve crop productivity

    Regional differences in lumbar spinal posture and the influence of low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP.</p> <p>Methods</p> <p>One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks.</p> <p>Results</p> <p>Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007).</p> <p>Conclusion</p> <p>This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load.</p
    corecore