32,932 research outputs found
A follow up study of the 1945 and 1950 graduates and non-graduates of Colby College.
Thesis (Ed.M.)--Boston Universit
Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function
Immune cell differentiation and function are crucially dependent on specific metabolic programs dictated by mitochondria, including the generation of ATP from the oxidation of nutrients and supplying precursors for the synthesis of macromolecules and post-translational modifications. The many processes that occur in mitochondria are intimately linked to their morphology that is shaped by opposing fusion and fission events. Exciting evidence is now emerging that demonstrates reciprocal crosstalk between mitochondrial dynamics and metabolism. Metabolic cues can control the mitochondrial fission and fusion machinery to acquire specific morphologies that shape their activity. We review the dynamic properties of mitochondria and discuss how these organelles interlace with immune cell metabolism and function
The Characterization of Surface Variegation Effects on Remote Sensing
Improvements in remote sensing capabilities hinge very directly upon attaining an understanding of the physical processes contributing to the measurements. In order to devise new measurement strategies and to learn better techniques for processing remotely gathered data, it is necessary to understand and to characterize the complex radiative interactions of the atmosphere-surface system. In particular, it is important to understand the role of atmospheric structure, ground reflectance inhomogeneity and ground bidirectional reflectance type. The goals, then, are to model, analyze, and parameterize the observable effects of three dimensional atmospheric structure and composition and two dimensional variations in ground albedo and bidirectional reflectance. To achieve these goals, a Monte Carlo radiative transfer code is employed to model and analyze the effects of many of the complications which are present in nature
Fusion of \ade Lattice Models
Fusion hierarchies of \ade face models are constructed. The fused critical
,  and elliptic  models yield new solutions of the Yang-Baxter
equations with bond variables on the edges of faces in addition to the spin
variables on the corners. It is shown directly that the row transfer matrices
of the fused models satisfy special functional equations. Intertwiners between
the fused \ade models are constructed by fusing the cells that intertwine the
elementary face weights. As an example, we calculate explicitly the fused
 face weights of the 3-state Potts model associated with the 
diagram as well as the fused intertwiner cells for the --
intertwiner. Remarkably, this  fusion yields the face weights of
both the Ising model and 3-state CSOS models.Comment: 41 page
Surface Free Energies, Interfacial Tensions and Correlation Lengths of the ABF Models
The surface free energies, interfacial tensions and correlation lengths of
the Andrews-Baxter-Forrester models in regimes III and IV are calculated with
fixed boundary conditions. The interfacial tensions are calculated between
arbitrary phases and are shown to be additive. The associated critical
exponents are given by  with  in regime III
and  with  in regime IV. Our results are
obtained using general commuting transfer matrix and inversion relation methods
that may be applied to other solvable lattice models.Comment: 21 pages, LaTeX 2e, requires the amsmath packag
A-D-E Polynomial and Rogers--Ramanujan Identities
We conjecture polynomial identities which imply Rogers--Ramanujan type
identities for branching functions associated with the cosets , with
=A \mbox{}, D ,
E . In support of our conjectures we establish the correct
behaviour under level-rank duality for =A and show that the
A-D-E Rogers--Ramanujan identities have the expected  asymptotics
in terms of dilogarithm identities. Possible generalizations to arbitrary
cosets are also discussed briefly.Comment: 19 pages, Latex, 1 Postscript figur
Solutions of the boundary Yang-Baxter equation for ADE models
We present the general diagonal and, in some cases, non-diagonal solutions of
the boundary Yang-Baxter equation for a number of related
interaction-round-a-face models, including the standard and dilute A_L, D_L and
E_{6,7,8} models.Comment: 32 pages. Sections 7.2 and 9.2 revise
Logarithmic Superconformal Minimal Models
The higher fusion level logarithmic minimal models LM(P,P';n) have recently
been constructed as the diagonal GKO cosets (A_1^{(1)})_k oplus (A_1^{(1)})_n /
(A_1^{(1)})_{k+n} where n>0 is an integer fusion level and k=nP/(P'-P)-2 is a
fractional level. For n=1, these are the logarithmic minimal models LM(P,P').
For n>1, we argue that these critical theories are realized on the lattice by n
x n fusion of the n=1 models. For n=2, we call them logarithmic superconformal
minimal models LSM(p,p') where P=|2p-p'|, P'=p' and p,p' are coprime, and they
share the central charges of the rational superconformal minimal models
SM(P,P'). Their mathematical description entails the fused planar
Temperley-Lieb algebra which is a spin-1 BMW tangle algebra with loop fugacity
beta_2=x^2+1+x^{-2} and twist omega=x^4 where x=e^{i(p'-p)pi/p'}. Examples are
superconformal dense polymers LSM(2,3) with c=-5/2, beta_2=0 and superconformal
percolation LSM(3,4) with c=0, beta_2=1. We calculate the free energies
analytically. By numerically studying finite-size spectra on the strip with
appropriate boundary conditions in Neveu-Schwarz and Ramond sectors, we argue
that, in the continuum scaling limit, these lattice models are associated with
the logarithmic superconformal models LM(P,P';2). For system size N, we propose
finitized Kac character formulas whose P,P' dependence only enters in the
fractional power of q in a prefactor. These characters involve Motzkin and
Riordan polynomials defined in terms of q-trinomial coefficients. Using the
Hamiltonian limit, we argue that there exist reducible yet indecomposable
representations for which the Virasoro dilatation operator L_0 exhibits rank-2
Jordan blocks confirming that these theories are indeed logarithmic. We relate
these results to the N=1 superconformal representation theory.Comment: 55 pages, v2: comments and references adde
Integrals of Motion for Critical Dense Polymers and Symplectic Fermions
We consider critical dense polymers . We obtain for this model
the eigenvalues of the local integrals of motion of the underlying Conformal
Field Theory by means of Thermodynamic Bethe Ansatz. We give a detailed
description of the relation between this model and Symplectic Fermions
including the indecomposable structure of the transfer matrix. Integrals of
motion are defined directly on the lattice in terms of the Temperley Lieb
Algebra and their eigenvalues are obtained and expressed as an infinite sum of
the eigenvalues of the continuum integrals of motion. An elegant decomposition
of the transfer matrix in terms of a finite number of lattice integrals of
motion is obtained thus providing a reason for their introduction.Comment: 53 pages, version accepted for publishing on JSTA
- …
