17,212 research outputs found
Constraining the orbits of sub-stellar companions imaged over short orbital arcs
Imaging a star's companion at multiple epochs over a short orbital arc
provides only four of the six coordinates required for a unique orbital
solution. Probability distributions of possible solutions are commonly
generated by Monte Carlo (MCMC) analysis, but these are biased by priors and
may not probe the full parameter space. We suggest alternative methods to
characterise possible orbits, which compliment the MCMC technique. Firstly the
allowed ranges of orbital elements are prior-independent, and we provide means
to calculate these ranges without numerical analyses. Hence several interesting
constraints (including whether a companion even can be bound, its minimum
possible semi-major axis and its minimum eccentricity) may be quickly computed
using our relations as soon as orbital motion is detected. We also suggest an
alternative to posterior probability distributions as a means to present
possible orbital elements, namely contour plots of elements as functions of
line of sight coordinates. These plots are prior-independent, readily show
degeneracies between elements and allow readers to extract orbital solutions
themselves. This approach is particularly useful when there are other
constraints on the geometry, for example if a companion's orbit is assumed to
be aligned with a disc. As examples we apply our methods to several imaged
sub-stellar companions including Fomalhaut b, and for the latter object we show
how different origin hypotheses affect its possible orbital solutions. We also
examine visual companions of A- and G-type main sequence stars in the
Washington Double Star Catalogue, and show that per cent must be
unbound.Comment: Accepted for publication in MNRA
A Comparison of Semi-Analytic and Smoothed Particle Hydrodynamics Galaxy Formation
We compare the statistical properties of galaxies found in two different
models of hierarchical galaxy formation: the semi-analytic model of Cole et al.
and the smoothed particle hydrodynamics (SPH) simulations of Pearce et al.
Using a `stripped-down' version of the semi-analytic model which mimics the
resolution of the SPH simulations and excludes physical processes not included
in them, we find that the two models produce an ensemble of galaxies with
remarkably similar properties, although there are some differences in the gas
cooling rates and in the number of galaxies that populate halos of different
mass. The full semi-analytic model, which has effectively no resolution limit
and includes a treatment of star formation and supernovae feedback, produces
somewhat different (but readily understandable) results. Agreement is
particularly good for the present-day global fractions of hot gas, cold dense
(i.e. galactic) gas and uncollapsed gas, for which the SPH and stripped-down
semi-analytic calculations differ by at most 25%. In the most massive halos,
the stripped-down semi-analytic model predicts, on the whole, up to 50% less
gas in galaxies than is seen in the SPH simulations. The two techniques
apportion this cold gas somewhat differently amongst galaxies in a given halo.
This difference can be tracked down to the greater cooling rate in massive
halos in the SPH simulation compared to the semi-analytic model. (abridged)Comment: 19 pages, 13 figures, to appear in MNRAS. Significantly extended to
explore galaxy progenitor distributions and behaviour of models at high
redshift
Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test
This paper first reviews non-traditional heat exchanger geometry, laser
welding, practical issues with microchannel heat exchangers, and high
effectiveness heat exchangers. Existing microchannel heat exchangers have low
material costs, but high manufacturing costs. This paper presents a new
expanded microchannel heat exchanger design and accompanying continuous
manufacturing technique for potential low-cost production. Polymer heat
exchangers have the potential for high effectiveness. The paper discusses one
possible joining method - a new type of laser welding named "forward conduction
welding," used to fabricate the prototype. The expanded heat exchanger has the
potential to have counter-flow, cross-flow, or parallel-flow configurations, be
used for all types of fluids, and be made of polymers, metals, or
polymer-ceramic precursors. The cost and ineffectiveness reduction may be an
order of magnitude or more, saving a large fraction of primary energy. The
measured effectiveness of the prototype with 28 micron thick black low density
polyethylene walls and counterflow, water-to-water heat transfer in 2 mm
channels was 72%, but multiple low-cost stages could realize the potential of
higher effectiveness
Optimal traps in graphene
We transform the two-dimensional Dirac-Weyl equation, which governs the
charge carriers in graphene, into a non-linear first-order differential
equation for scattering phase shift, using the so-called variable phase method.
This allows us to utilize the Levinson Theorem to find zero-energy bound states
created electrostatically in realistic structures. These confined states are
formed at critical potential strengths, which leads to us posit the use of
`optimal traps' to combat the chiral tunneling found in graphene, which could
be explored experimentally with an artificial network of point charges held
above the graphene layer. We also discuss scattering on these states and find
the zero angular momentum states create a dominant peak in scattering
cross-section as energy tends towards the Dirac point energy, suggesting a
dominant contribution to resistivity.Comment: 11 pages, 5 figure
Fundamental Limits of Classical and Quantum Imaging
Quantum imaging promises increased imaging performance over classical
protocols. However, there are a number of aspects of quantum imaging that are
not well understood. In particular, it has so far been unknown how to compare
classical and quantum imaging procedures. Here, we consider classical and
quantum imaging in a single theoretical framework and present general
fundamental limits on the resolution and the deposition rate for classical and
quantum imaging. The resolution can be estimated from the image itself. We
present a utility function that allows us to compare imaging protocols in a
wide range of applications.Comment: 4 pages, 3 figures; accepted for Physical Review Letters, with
updated title and fixed typo
- …