520 research outputs found

    Solitosynthesis induced phase transitions

    Full text link
    We consider a phase transition induced by the growth of Q-balls in a false vacuum. Such a transition could occur in the early universe in the case of broken supersymmetry with a metastable false vacuum. Small Q-balls with a negative potential energy can grow in a false vacuum by accretion of global charge until they reach critical size, expand, and cause a phase transition. We consider the growth of Q-balls from small to large, using the Bethe-Salpeter equation to describe small charge solitons and connecting to the growth of larger solitons for which the semiclassical approximation is reliable. We thus test the scenario in a simplified example inspired by supersymmetric extensions of the standard model.Comment: 14 pages, 9 figures, 2 tables Added sections on explicit connection between Q-balls and squark and higgs field

    Signals from dark atom formation in halos

    Full text link
    We consider indirect detection signals of atomic dark matter, with a massive dark photon which mixes kinetically with hypercharge. In significant regions of parameter space, dark matter remains at least partially ionized today, and dark atom formation can occur efficiently in dense regions, such as the centers of galactic halos. The formation of dark atoms is accompanied by emission of a dark photon, which can subsequently decay into Standard Model particles. We discuss the expected signal strength and compare it to that of annihilating dark matter. As a case study, we explore the possibility that dark atom formation can account for the observed 511 keV line and outline the relevant parameter space.Comment: 14 pages, 10 figure

    Leptogenesis via Higgs Condensate Relaxation

    Full text link
    An epoch of Higgs relaxation may occur in the early universe during or immediately following postinflationary reheating. It has recently been pointed out that leptogenesis may occur in minimal extensions of the Standard Model during this epoch. We analyse Higgs relaxation taking into account the effects of perturbative and non-perturbative decays of the Higgs condensate, and we present a detailed derivation of the relevant kinetic equations and of the relevant particle interaction cross sections. We identify the parameter space in which a sufficiently large asymmetry is generated.Comment: 18 pages, 14 figure

    Self-interacting asymmetric dark matter coupled to a light massive dark photon

    Full text link
    Dark matter (DM) with sizeable self-interactions mediated by a light species offers a compelling explanation of the observed galactic substructure; furthermore, the direct coupling between DM and a light particle contributes to the DM annihilation in the early universe. If the DM abundance is due to a dark particle-antiparticle asymmetry, the DM annihilation cross-section can be arbitrarily large, and the coupling of DM to the light species can be significant. We consider the case of asymmetric DM interacting via a light (but not necessarily massless) Abelian gauge vector boson, a dark photon. In the massless dark photon limit, gauge invariance mandates that DM be multicomponent, consisting of positive and negative dark ions of different species which partially bind in neutral dark atoms. We argue that a similar conclusion holds for light dark photons; in particular, we establish that the multi-component and atomic character of DM persists in much of the parameter space where the dark photon is sufficiently light to mediate sizeable DM self-interactions. We discuss the cosmological sequence of events in this scenario, including the dark asymmetry generation, the freeze-out of annihilations, the dark recombination and the phase transition which gives mass to the dark photon. We estimate the effect of self-interactions in DM haloes, taking into account this cosmological history. We place constraints based on the observed ellipticity of large haloes, and identify the regimes where DM self-scattering can affect the dynamics of smaller haloes, bringing theory in better agreement with observations. Moreover, we estimate the cosmological abundance of dark photons in various regimes, and derive pertinent bounds.Comment: v3: published versio

    Leptogenesis Via Neutrino Production During Higgs Condensate Relaxation

    Full text link
    During inflation, scalar fields, including the Higgs boson, may acquire a nonzero vacuum expectation value, which must later relax to the equilibrium value during reheating. In the presence of the time-dependent condensate, the vacuum state can evolve into a state with a nonzero particle number. We show that, in the presence of lepton number violation in the neutrino sector, the particle production can explain the observed matter-antimatter asymmetry of the universe. We find that this form of leptogenesis is particularly effective when the Higgs condensate decays rapidly and at low reheat scale. As part of the calculation, we present some exact results for the Bogoliubov transformations for Majorana fermions with a nonzero time-dependent chemical potential, in addition to a time-dependent mass.Comment: 19 pages, 3 figure

    Gravitational waves from fermion production during axion inflation

    Full text link
    We present analytic results for the gravitational wave power spectrum induced in models where the inflaton is coupled to a fermionic pseudocurrent. We show that although such a coupling creates helically polarized fermions, the polarized component of the resulting gravitational waves is parametrically suppressed with respect to the non-polarized one. We also show that the amplitude of the gravitational wave signal associated to this production cannot exceed that generated by the standard mechanism of amplification of vacuum fluctuations. We previously found that this model allows for a regime in which the backreaction of the produced fermions allows for slow-roll inflation even for a steep inflaton potential, and still leads to Gaussian primordial scalar perturbations. The present analysis shows that this regime also results in a gravitational wave signal compatible with the current bounds.Comment: 29 pages, 2 figure
    • …
    corecore