151 research outputs found

    From Ethanol to Salsolinol: Role of Ethanol Metabolites in the Effects of Ethanol

    Get PDF
    In spite of the global reputation of ethanol as the psychopharmacologically active ingredient of alcoholic drinks, the neurobiological basis of the central effects of ethanol still presents some dark sides due to a number of unanswered questions related to both its precise mechanism of action and its metabolism. Accordingly, ethanol represents the interesting example of a compound whose actions cannot be explained as simply due to the involvement of a single receptor/neurotransmitter, a scenario further complicated by the robust evidence that two main metabolites, acetaldehyde and salsolinol, exert many effects similar to those of their parent compound. The present review recapitulates, in a perspective manner, the major and most recent advances that in the last decades boosted a significant growth in the understanding on the role of ethanol metabolism, in particular, in the neurobiological basis of its central effects

    Natural dietary compounds in the treatment of arsenic toxicity

    Get PDF
    Chronic exposure to arsenic (As) compounds leads to its accumulation in the body, with skin lesions and cancer being the most typical outcomes. Treating As-induced diseases continues to be challenging as there is no specific, safe, and efficacious therapeutic management. Therapeutic and preventive measures available to combat As toxicity refer to chelation therapy, antioxidant therapy, and the intake of natural dietary compounds. Although chelation therapy is the most commonly used method for detoxifying As, it has several side effects resulting in various toxicities such as hepatotoxicity, neurotoxicity, and other adverse consequences. Drugs of plant origin and natural dietary compounds show efficient and progressive relief from As-mediated toxicity without any particular side effects. These natural compounds have also been found to aid the elimination of As from the body and, therefore, can be more effective than conventional therapeutic agents in ameliorating As toxicity. This review provides an overview of the recently updated knowledge on treating As poisoning through natural dietary compounds. This updated information may serve as a basis for defining novel prophylactic and therapeutic formulations

    A family of kojic acid derivatives aimed to remediation of Pb2+ and Cd2+

    Get PDF
    The present work analyzes the complex formation ability towards Pb2+ and Cd2+ of a series of kojic acid derivatives that join the chelating properties of the pyrone molecules and those of polyamines, with the aim of evaluating how the different effects of oxygen and nitrogen coordinating groups act on the stability of metal complexes. Experimental research is carried out using potentiometric and spectrophotometric techniques supported by 1H and 13C NMR spectroscopy and DFT calculations. Actually, a different coordination mechanism toward Pb2+ and Cd2+ was proved: in the case of Pb2+, coordination takes place exclusively via the oxygen atoms, while the contribute of the nitrogen atoms appears relevant in the case of Cd2+. Lead complexes of all the studied ligands are characterized by significantly stronger stability than those of cadmium. Finally, on the basis of the measured complex formation stabilities, some of the proposed molecules seems promising effective ligands for lead and cadmium ion decorporation from polluted soils or waste waters

    Role of nucleus accumbens μ opioid receptors in the effects of morphine on ERK1/2 phosphorylation

    Get PDF
    Rationale: Despite the critical role attributed to phosphorylated extracellular signal regulated kinase (pERK1/2) in the nucleus accumbens (Acb) in the actions of addictive drugs, the effects of morphine on ERK1/2 phosphorylation in this area are still controversial. Objectives: In order to investigate further this issue, we studied (1) the ability of morphine to affect ERK1/2 phosphorylation in the shell (AcbSh) and core (AcbC) of Sprague-Dawley and Wistar rats and of CD-1 and C57BL/6J mice and (2) the role of dopamine D1 and μ-opioid receptors in Sprague-Dawley rats and CD-1 mice. Methods: The pERK1/2 expression was assessed by immunohistochemistry. Results: In rats, morphine decreased AcbSh and AcbC pERK1/2 expression, whereas in mice, increased it preferentially in the AcbSh compared with the AcbC. Systemic SCH 39166 decreased pERK1/2 expression on its own in the AcbSh and AcbC of Sprague-Dawley rats and CD-1 mice; furthermore, in rats, SCH 39166 disclosed the ability of morphine to stimulate pERK1/2 expression. Systemic (rats and mice) and intra-Acb (rats) naltrexone prevented both decreases, in rats, and increases, in mice. Conclusions: These findings confirm the differential effects of morphine in rats and mice Acb and that D1 receptors exert a facilitatory role on ERK1/2 phosphorylation; furthermore, they indicate that, in rats, removal of the D1-dependent pERK1/2 expression discloses the stimulatory influence of morphine on ERK1/2 phosphorylation and that the morphine’s ability to decrease pERK1/2 expression is mediated by Acb μ-opioid receptors. Future experiments may disentangle the psychopharmacological significance of the effects of morphine on pERK1/2 in the Acb

    Synthesis and CNS activities of pyridopyrazinone and pyridodiazepinone derivatives

    Get PDF
    New tricyclic derivatives with cyclocondensed pyrido-pyrazine 7,10 and pyrido-diazepine 20a,20b skeletons were synthetized and biologically investigated. The compounds, preliminarily tested on explorative, muscle relaxing, antinociceptive, spontaneous motor activities and influence on the narcotic effect of Evipan, revealed interesting CNS depressant and analgesic activities. The pyrido[2,3-e]pyrrolo[1,2-a]pyrazine structure of 7 appeared the most promising for analgesic and neuroleptic activities. The above compounds were assayed also for their capacity to inhibit DNA synthesis in Ehrlich ascites tumor cells; 20a appeared to be able of inducing a significant inhibition

    Plasmonic Enhancement of Second Harmonic Generation in Weyl Semimetal TaAs

    Full text link
    In this work a hybrid nanoplasmonic-Weyl Semimetal (WSM) structure is realized for the first time utilizing silver nanopatch antennas and WSM Tantalum Arsenide (TaAs). The studied hybrid WSM-nanoplasmonic structure demonstrated a substantial, over x4.5 enhancement of the second harmonic generation (SHG) process compared to a bare TaAs film. To realize the hybrid structure while preserving TaAs properties, a scalable, non-destructive manufacturing approach was developed that involves the fabrication of TaAs flakes from single crystalline TaAs, overgrowth of a silicon nitride overlayer, and drop-casting of silver nanopatch antennas. The strong polarization response of both the bare flakes, along with the hybrid-nanoplasmonic cavities demonstrates that this approach uniquely preserves the TaAs crystal structure and its optical response while providing significant enhancement of the nonlinear properties. The developed method allows leveraging the capabilities of plasmonics to control and enhance light-matter interactions at the nanometer scale to access and engineer WSM response. This work is the first step towards high-performance nanophotonic devices utilizing WSM topological properties

    Comparison of selectivity of a family of chelating agents for trivalent (Al<sup>3+</sup>, Fe<sup>3+</sup>) and bivalent (Cu<sup>2+</sup>, Zn<sup>2+</sup>) metal ions

    Get PDF
    Chelation therapy is used for the treatment of metal intoxication in humans. Selectivity towards the target metal ion is one important characteristic of the chelating agent. In the frame of our research of chelating agents for iron and aluminium, we synthesized five new ligands (Figure 1), and studied their behavior toward the trivalent metal ions. L4, L5, L6 and L8 were found to be excellent ligands for the coordination of Fe3+ and Al3+. We are presenting here a study on the same ligands with the two essential bivalent metal ions, Zn2+ and Cu2+. The results of spectrophotometric, potentiometric, and NMR measurements performed to determine the equilibrium formation constants will be presented. The speciation of the complexes with the trivalent metal ions in presence of endogenous zinc and copper will be discussed

    Simultaneous wireless and high-resolution detection of nucleus accumbens shell ethanol concentrations and free motion of rats upon voluntary ethanol intake

    Get PDF
    Highly sensitive detection of ethanol concentrations in discrete brain regions of rats voluntarily accessing ethanol, with high temporal resolution, would represent a source of greatly desirable data in studies devoted to understanding the kinetics of the neurobiological basis of ethanol's ability to impact behavior. In the present study, we present a series of experiments aiming to validate and apply an original high-tech implantable device, consisting of the coupling, for the first time, of an amperometric biosensor for brain ethanol detection, with a sensor for detecting the microvibrations of the animal. This device allows the real-time comparison between the ethanol intake, its cerebral concentrations, and their effect on the motion when the animal is in the condition of voluntary drinking. To this end, we assessed in vitro the efficiency of three different biosensor designs loading diverse alcohol oxidase enzymes (AOx) obtained from three different AOx-donor strains: Hansenula polymorpha, Candida boidinii, and Pichia pastoris. In vitro data disclosed that the devices loading H. polymorpha and C. boidinii were similarly efficient (respectively, linear region slope [LRS]: 1.98 ± 0.07 and 1.38 ± 0.04 nA/mM) but significantly less than the P. pastoris-loaded one (LRS: 7.57 ± 0.12 nA/mM). The in vivo results indicate that this last biosensor design detected the rise of ethanol in the nucleus accumbens shell (AcbSh) after 15 minutes of voluntary 10% ethanol solution intake. At the same time, the microvibration sensor detected a significant increase in the rat's motion signal. Notably, both the biosensor and microvibration sensor described similar and parallel time-dependent U-shaped curves, thus providing a highly sensitive and time-locked high-resolution detection of the neurochemical and behavioral kinetics upon voluntary ethanol intake. The results overall indicate that such a dual telemetry unit represents a powerful device which, implanted in different brain areas, may boost further investigations on the neurobiological mechanisms that underlie ethanol-induced motor activity and reward

    Hydroxypyridinones with enhanced iron chelating properties. Synthesis, characterization and in vivo tests of 5-hydroxy-2-(hydroxymethyl)pyridine-4(1H)-one

    Get PDF
    The synthesis of 5-hydroxy-2-(hydroxymethyl)pyridin-4(1H)-one (P1) is presented, together with the evaluation of its coordination ability towards Fe3+, studied by a combination of chemical, computational, and animal approaches. The use of complementary analytical techniques has allowed us to give evidence of the tautomeric changes of P1 as a function of pH, and to determine their influence on the coordinating ability of P1 towards Fe3+. The pFe3+ value 22.0 of P1–iron complexes is noticeably higher than that of deferiprone (20.6), one of the three clinical chelating agents in therapeutic use for iron overload diseases. This is due on one side to the tautomeric change to the catechol form, and on the other to the lower protonation constant of the OH group. Bio-distribution studies on mice allowed us to confirm in vivo the efficacy of P1. Furthermore the coordinating ability toward Al3+, Cu2+ and Zn2+ has been studied to evalu- ate the possible use of P1 against a second toxic metal ion (Al3+), and to envisage its potential influence on the homeostatic equilibria of essential metal ions. The chelating ability of P1 toward these ions, not higher than that of the corresponding deferiprone, contributes to render P1 a more selective iron chelato
    • …
    corecore