16 research outputs found

    Change of cystine/glutamate antiporter expression in ethanol-dependent rats

    Get PDF
    Background: Some drugs of abuse down regulate the expression of cystine/glutamate (xCT) antiporter in the nucleus accumbens (Acb) after extinction or withdrawal. The altered level of xCT exchanger in Acb, a structure involved in ethanol reinforcement, may contribute to the pathological glutamatergic signalling, linked to addiction. We hypothesised that the expression of xCT may be changed in Acb and whole brain also in non-dependent (occasional drinkers), ethanol-dependent rats, as well as, during ethanol withdrawal.Methods: Wistar rats were made ethanol-dependent by chronic exposure to an alcoholic milk beverage (from 2.4 to 7.2% v/v ethanol). Ethanol non-dependent rats were exposed to a similar, but non-alcoholic liquid diet and self-administered ethanol (10%) twice a week. Withdrawal in ethanol-dependent rats was studied at 12 hours after the last ethanol-enriched diet exposure. Immediately after the measurement of somatic signs of withdrawal, Western blot analysis with a polyclonal antibody against xCT was carried out in a naïve control group, non-dependent and ethanol-dependent rats as well as withdrawal rats, in order to study the level of xCT expression in Acb and whole brain. Results. Non-dependent rats self-administered an average dose of 1.21±0.02 g/kg per session (30 min). Daily ethanol consumption during chronic exposure to the alcoholic beverage ranged from 6.30±0.16 to 13.99±0.66 g/kg. Ethanol dependent rats after suspension of the ethanol-enriched diet have shown significant somatic signs of withdrawal. Western blotting analysis of Acb lysates revealed that xCT was over expressed in ethanol-dependent rats whereas in whole brain preparations xCT was over expressed in both non-dependent and ethanol-dependent rats compared to control group. On the contrary, xCT expression during withdrawal was down regulated in Acb and restored to control level in whole brain preparations. Conclusions: The changes of xCT expression in both Acb and whole brain followi

    Acetaldehyde-Reinforcing Effects: A Study on Oral Self-Administration Behavior

    Get PDF
    Acetaldehyde (ACD) is the first metabolite of ethanol. Although, the role of ACD in ethanol addiction has been controversial, there are data showing a relationship. The objective of the current study was to further test the hypothesis that ACD itself is reinforcing. For this reason, we carried out a study on operant oral ACD self-administration. Wistar rats were trained to self-administer tap water or ACD by nose-poking in daily 30 min sessions for 15 consecutive days. Response on active nose-poke caused delivery of ACD solution or tap water, whereas responses on inactive nose-poke had no consequences. The results show that ACD maintains oral self-administration behavior and rates of active nose-pokes significantly higher than tap water. The dose–response plot for oral ACD self-administration is a “bell-shaped” curve suggesting reinforcing properties only in a limited range of doses. Furthermore, rats self-administering ACD show a deprivation effect upon ACD removal and gradually reinstated active nose-poke response when ACD was reintroduced. Overall, this study shows that ACD is orally self-administered and further supports the hypothesis that ACD possesses reinforcing properties, which suggests that some of the pharmacological effects attributed to ethanol may result from its biotransformation into ACD, thereby supporting an active involvement of ACD in ethanol addiction

    Neuroprotective effect of (R)-(-)-linalool on oxidative stress in PC12 cells

    Get PDF
    Background: Oxidative stress plays an important role in neurodegeneration, pain and inflammation. (R)-(-)- linalool (LIN) is endowed with neuroprotective, anti-nociceptive and anti-inflammatory properties. Purpose: The present study aims at investigating the hypothesis that LIN’s neuroprotective, antinociceptive and anti-inflammatory properties descend from its ability to act as antioxidant. The study challenges this hypothesis by verifying whether LIN may counteract hydrogen peroxide (H 2 O 2 )-induced oxidative stress in PC12 cells. Methods: In H 2 O 2 -exposed PC12 cells, LIN was tested on a) cell viability, measured by 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT), b) damage of plasma membrane, measured by lactate dehydrogenase (LDH) release, c) intracellular levels of reactive-oxygen-species (ROS), d) apoptosis and e) cell cycle distribution. Results: Under H 2 O 2 -induced cell viability reduction, LIN protects PC12 cells. Likewise, LIN protects cells from oxidative damage by preventing the H 2 O 2 -dependent increase of LDH release, counteracts intracellular ROS overproduction and reduces H 2 O 2 -induced apoptosis. Finally, the results of the cell cycle analysis from cells exposed to H 2 O 2 indicate that LIN incubation reduces the number of cells induced into quiescence by H 2 O 2 in the G2/M phase. Conclusions: These findings indicate that LIN protects PC12 cells from H 2 O 2 -induced oxidative stress. This mech- anism could justify the neuroprotective, anti-nociceptive and anti-inflammatory effects of this compound and suggest LIN as a potential therapeutic agent for the management oxidative stress-mediated pain

    Ethanol-Dependent Synthesis of Salsolinol in the Posterior Ventral Tegmental Area as Key Mechanism of Ethanol’s Action on Mesolimbic Dopamine

    Get PDF
    Abnormal consumption of ethanol, the ingredient responsible for alcoholic drinks’ addictive liability, causes millions of deaths yearly. Ethanol’s addictive potential is triggered through activation, by a still unknown mechanism, of the mesolimbic dopamine (DA) system, part of a key motivation circuit, DA neurons in the posterior ventral tegmental area (pVTA) projecting to the ipsilateral nucleus accumbens shell (AcbSh). The present in vivo brain microdialysis study, in dually-implanted rats with one probe in the pVTA and another in the ipsilateral or contralateral AcbSh, demonstrates this mechanism. As a consequence of the oral administration of a pharmacologically relevant dose of ethanol, we simultaneously detect a) in the pVTA, a substance, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), untraceable under control conditions, product of condensation between DA and ethanol’s first by-product, acetaldehyde; and b) in the AcbSh, a significant increase of DA release. Moreover, such newly generated salsolinol in the pVTA is responsible for increasing AcbSh DA release via m opioid receptor (mOR) stimulation. In fact, inhibition of salsolinol’s generation in the pVTA or blockade of pVTA mORs prevents ethanol-increased ipsilateral, but not contralateral, AcbSh DA release. This evidence discloses the long-sought key mechanism of ethanol’s addictive potential and suggests the grounds for developing preventive and therapeutic strategies against abnormal consumption

    Inhibition of Morphine- and Ethanol-Mediated Stimulation of Mesolimbic Dopamine Neurons by Withania somnifera

    Get PDF
    Morphine- and ethanol-induced stimulation of neuronal firing of ventral tegmental area (VTA) dopaminergic neurons and of dopamine (DA) transmission in the shell of the nucleus accumbens (AcbSh) represents a crucial electrophysiological and neurochemical response underlying the ability of these compounds to elicit motivated behaviors and trigger a cascade of plasticity-related biochemical events. Previous studies indicate that the standardized methanolic extract of Withania somnifera roots (WSE) prevents morphine- and ethanol-elicited conditioned place preference and oral ethanol self-administration. Aim of the present research was to investigate whether WSE may also interfere with the ability of morphine and ethanol to stimulate VTA dopaminergic neurons and thus AcbSh DA transmission as assessed in male Sprague- Dawley rats by means of patch-clamp recordings in mesencephalic slices and in vivo brain microdialysis, respectively. Morphine and ethanol significantly stimulated spontaneous firing rate of VTA neurons and DA transmission in the AcbSh. WSE, at concentrations (200–400 mg/ml) that significantly reduce spontaneous neuronal firing of VTA DA neurons via a GABAA- but not GABAB-mediated mechanism, suppressed the stimulatory actions of both morphine and ethanol. Moreover, in vivo administration of WSE at a dose (75 mg/kg) that fails to affect basal DA transmission, significantly prevented both morphine- and ethanol-elicited increases of DA in the AcbSh. Overall, these results highlight the ability of WSE to interfere with morphine- and ethanolmediated central effects and suggest a mechanistic interpretation of the efficacy of this extract to prevent the motivational properties of these compounds

    Differential effects of the MEK inhibitor SL327 on the acquisition and expression of ethanol-elicited conditioned place preference and aversion in mice

    No full text
    The involvement of mitogen-activating extracellular kinase (MEK) in place conditioning may vary depending on the motivational sign (positive or negative) and nature (pharmacological or nociceptive) of the unconditioned stimulus (US) and on the phase (acquisition or expression) of the learning process. This study investigated the role of MEK on the acquisition and expression of ethanol-elicited (given 2 g/kg) backward (preference, CPP) and forward (aversion, CPA) place conditioning. The MEK inhibitor SL327 (50 mg/kg for CPP, and 50 and 100 mg/kg for CPA) was administered to CD-1 mice 60 minutes before an ethanol dose (acquisition) or 60 minutes before the post-conditioning tests (expression). Ethanol significantly elicited CPP and CPA; SL327 (50 mg/kg) significantly blocked the acquisition of ethanol-elicited CPP, but not that of CPA. Moreover, SL327 (50 and 100 mg/kg) significantly reduced the expression of ethanol-elicited CPP, but not that of CPA. Finally, SL327 also prevented ethanol-elicited (given 2 g/kg) increases of phosphorylated extracellular signal regulated kinase (pERK)-positive neurons in the nucleus accumbens and other nuclei of the extended amygdala. Overall, these results confirmed the differential involvement of MEK in the acquisition and expression of drug-elicited place conditioning and suggested its differential involvement in distinct behavioral outcomes, depending on the motivational sign of the (same) US and on the significance of the experimental phase of the learning process

    New perspective for an old drug: Can naloxone be considered an antioxidant agent?

    No full text
    Background: Experimental evidence indicates that Naloxone (NLX) holds antioxidant properties. The present study aims at verifying the hypothesis that NLX could prevent oxidative stress induced by hydrogen peroxide (H2O2) in PC12 cells. Methods: To investigate the antioxidant effect of NLX, initially, we performed electrochemical experiments by means of platinum-based sensors in a cell-free system. Subsequently, NLX was tested in PC12 cells on H2O2-induced overproduction of intracellular levels of reactive-oxygen-species (ROS), apoptosis, modification of cells' cycle distribution and damage of cells’ plasma membrane. Results: This study reveals that NLX counteracts intracellular ROS production, reduces H2O2-induced apoptosis levels, and prevents the oxidative damage-dependent increases of the percentage of cells in G2/M phase. Likewise, NLX protects PC12 cells from H2O2- induced oxidative damage, by preventing the lactate dehydrogenase (LDH) release. Moreover, electrochemical experiments confirmed the antioxidant properties of NLX. Conclusion: Overall, these findings provide a starting point for studying further the protective effects of NLX on oxidative stress

    Role of nucleus accumbens ÎĽ opioid receptors in the effects of morphine on ERK1/2 phosphorylation

    No full text
    RATIONALE: Despite the critical role attributed to phosphorylated extracellular signal regulated kinase (pERK1/2) in the nucleus accumbens (Acb) in the actions of addictive drugs, the effects of morphine on ERK1/2 phosphorylation in this area are still controversial. OBJECTIVES: In order to investigate further this issue, we studied (1) the ability of morphine to affect ERK1/2 phosphorylation in the shell (AcbSh) and core (AcbC) of Sprague-Dawley and Wistar rats and of CD-1 and C57BL/6J mice and (2) the role of dopamine D1 and ÎĽ-opioid receptors in Sprague-Dawley rats and CD-1 mice. METHODS: The pERK1/2 expression was assessed by immunohistochemistry. RESULTS: In rats, morphine decreased AcbSh and AcbC pERK1/2 expression, whereas in mice, increased it preferentially in the AcbSh compared with the AcbC. Systemic SCH 39166 decreased pERK1/2 expression on its own in the AcbSh and AcbC of Sprague-Dawley rats and CD-1 mice; furthermore, in rats, SCH 39166 disclosed the ability of morphine to stimulate pERK1/2 expression. Systemic (rats and mice) and intra-Acb (rats) naltrexone prevented both decreases, in rats, and increases, in mice. CONCLUSIONS: These findings confirm the differential effects of morphine in rats and mice Acb and that D1 receptors exert a facilitatory role on ERK1/2 phosphorylation; furthermore, they indicate that, in rats, removal of the D1-dependent pERK1/2 expression discloses the stimulatory influence of morphine on ERK1/2 phosphorylation and that the morphine's ability to decrease pERK1/2 expression is mediated by Acb ÎĽ-opioid receptors. Future experiments may disentangle the psychopharmacological significance of the effects of morphine on pERK1/2 in the Ac

    Mystic acetaldehyde: The never-endings story on alcoholism

    No full text
    After decades of uncertainties and drawbacks, the study on the role and significance of acetaldehyde in the effects of ethanol seemed to have found its main paths. Accordingly, the effects of acetaldehyde, after its systemic or central administration and as obtained following ethanol metabolism, looked as they were extensively characterized. However, almost 5 years after this research appeared at its highest momentum, the investigations on this topic have been revitalized on at least three main directions: (1) the role and the behavioral significance of acetaldehyde in different phases of ethanol self-administration and in voluntary ethanol consumption; (2) the distinction, in the central effects of ethanol, between those arising from its non-metabolized fraction and those attributable to ethanol-derived acetaldehyde; and (3) the role of the acetaldehyde-dopamine condensation product, salsolinol. The present review article aims at presenting and discussing prospectively the most recent data accumulated following these three research pathways on this never-ending story in order to offer the most up-to-date synoptic critical view on such still unresolved and exciting topic
    corecore