5,069 research outputs found

    Measuring the Deviation from the Linear and Deterministic Bias through Cosmic Gravitational Lensing Effects

    Full text link
    Since gravitational lensing effects directly probe inhomogeneities of dark matter, lensing-galaxy cross-correlations can provide us important information on the relation between dark matter and galaxy distributions, i.e., the bias. In this paper, we propose a method to measure the stochasticity/nonlinearity of the galaxy bias through correlation studies of the cosmic shear and galaxy number fluctuations. Specifically, we employ the aperture mass statistics MapM_{ap} to describe the cosmic shear. We divide the foreground galaxy redshift zf<zsz_f<z_s into several bins, where zsz_s is the redshift of the source galaxies, and calculate the quantity 2/^2/ for each redshift bin. Then the ratio of the summation of 2/<Ng2(zf)>^2/< N_g^2(z_f)> over the bins to gives a measure of the nonlinear/stochastic bias. Here Ng(zf)N_g(z_f) is the projected surface number density fluctuation of foreground galaxies at redshift zfz_f, and MapM_{ap} is the aperture mass from the cosmic-shear analysis. We estimate that for a moderately deep weak-lensing survey with zs=1z_s=1, source galaxy surface number density nb=30gal/arcmin2n_b=30 \hbox {gal}/\hbox {arcmin}^2 and a survey area of 25deg225 \hbox {deg}^2, the effective rr-parameter that represents the deviation from the linear and deterministic bias is detectable in the angular range of 1'-10' if |r-1|\gsim 10%. For shallow, wide surveys such as the Sloan Digital Sky Survey with zs=0.5z_s=0.5, nb=5gal/arcmin2n_b=5 \hbox {gal}/\hbox {arcmin}^2, and a survey area of 104deg210^4 \hbox {deg}^2, a 10% detection of rr is possible over the angular range 1â€Č−100â€Č1'-100'.Comment: ApJ in pres

    Effect of Photometric Redshift Uncertainties on Weak Lensing Tomography

    Full text link
    We perform a systematic analysis of the effects of photometric redshift uncertainties on weak lensing tomography. We describe the photo-z distribution with a bias and Gaussian scatter that are allowed to vary arbitrarily between intervals of dz = 0.1 in redshift.While the mere presence of bias and scatter does not substantially degrade dark energy information, uncertainties in both parameters do. For a fiducial next-generation survey each would need to be known to better than about 0.003-0.01 in redshift for each interval in order to lead to less than a factor of 1.5 increase in the dark energy parameter errors. The more stringent requirement corresponds to a larger dark energy parameter space, when redshift variation in the equation of state of dark energy is allowed.Of order 10^4-10^5 galaxies with spectroscopic redshifts fairly sampled from the source galaxy distribution will be needed to achieve this level of calibration. If the sample is composed of multiple galaxy types, a fair sample would be required for each. These requirements increase in stringency for more ambitious surveys; we quantify such scalings with a convenient fitting formula. No single aspect of a photometrically binned selection of galaxies such as their mean or median suffices, indicating that dark energy parameter determinations are sensitive to the shape and nature of outliers in the photo-z redshift distribution.Comment: 10 pages, 12 figures, accepted by Ap

    Tunable coaxial resonators based on silicon optical fibers

    No full text
    Thermal tuning of a coaxial fiber resonator with a silica cladding surrounding an inner silicon core is investigated. By pumping the silicon with below bandgap light, it is possible to redshift the WGM resonances

    The Evolution of Radio Galaxies at Intermediate Redshift

    Get PDF
    We describe a new estimate of the radio galaxy 1.4 GHz luminosity function and its evolution at intermediate redshifts (z~0.4). Photometric redshifts and color selection have been used to select Bj<23.5 early-type galaxies from the Panoramic Deep Fields, a multicolor survey of two 25 sq deg fields. Approximately 230 radio galaxies have then been selected by matching early-type galaxies with NVSS radio sources brighter than 5 mJy. Estimates of the 1.4 GHz luminosity function of radio galaxies measure significant evolution over the observed redshift range. For an Omega_M=1 cosmology the evolution of the radio power is consistent with luminosity evolution where P(z)=P(0)(1+z)^{k_L} and 3<k_L<5. The observed evolution is similar to that observed for UVX and X-ray selected AGN and is consistent with the same physical process being responsible for the optical and radio luminosity evolution of AGN.Comment: 26 pages, 9 Figures, Accepted for Publication in A

    Imprint of Reionization on the Cosmic Microwave Background Bispectrum

    Get PDF
    We study contributions to the cosmic microwave background (CMB) bispectrum from non-Gaussianity induced by secondary anisotropies during reionization. Large-scale structure in the reionized epoch both gravitational lenses CMB photons and produces Doppler shifts in their temperature from scattering off electrons in infall. The resulting correlation is potentially observable through the CMB bispectrum. The second-order Ostriker-Vishniac also couples to a variety of linear secondary effects to produce a bispectrum. For the currently favored flat cosmological model with a low matter content and small optical depth in the reionized epoch \tau \la 0.3, however, these bispectrum contributions are well below the detection threshold of MAP and at or below that of Planck, given their cosmic and noise variance limitations. At the upper end of this range, they can serve as an extra source of noise for measurements with Planck of either primordial nongaussianity or that induced by the correlation of gravitational lensing with the integrated Sachs-Wolfe and the thermal Sunyaev-Zel'dovich effects. We include a discussion of the general properties of the CMB bispectrum, its configuration dependence for the various effects, and its computation in the Limber approximation and beyond.Comment: 17 pages, 10 figures (with emulateapj.sty); submitted to Ap

    A New Algorithm for Computing Statistics of Weak Lensing by Large-Scale Structure

    Full text link
    We describe an efficient algorithm for calculating the statistics of weak lensing by large-scale structure based on a tiled set of independent particle-mesh N-body simulations which telescope in resolution along the line of sight. This efficiency allows us to predict not only the mean properties of lensing observables such as the power spectrum, skewness and kurtosis of the convergence, but also their sampling errors for finite fields of view, which are themselves crucial for assessing the cosmological significance of observations. We find that the nongaussianity of the distribution substantially increases the sampling errors for the skewness and kurtosis in the several to tens of arcminutes regime, whereas those for the power spectrum are only fractionally increased even out to wavenumbers where shot noise from the intrinsic ellipticities of the galaxies will likely dominate the errors.Comment: 12 pages, 13 figures; minor changes reflect accepted versio

    First cosmic shear results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey

    Full text link
    We present the first measurements of the weak gravitational lensing signal induced by the large scale mass distribution from data obtained as part of the ongoing Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). The data used in this analysis are from the Wide Synoptic Survey, which aims to image ~170 square degree in five filters. We have analysed ~22 deg2 (31 pointings) of i' data spread over two of the three survey fields. These data are of excellent quality and the results bode well for the remainder of the survey: we do not detect a significant `B'-mode, suggesting that residual systematics are negligible at the current level of accuracy. Assuming a Cold Dark Matter model and marginalising over the Hubble parameter h=[0.6,0.8], the source redshift distribution and systematics, we constrain sigma_8, the amplitude of the matter power spectrum. At a fiducial matter density Omega_m=0.3 we find sigma_8=0.85+-0.06. This estimate is in excellent agreement with previous studies. Combination of our results with those from the Deep component of the CFHTLS enables us to place a constraint on a constant equation of state for the dark energy, based on cosmic shear data alone. We find that w_0<-0.8 at 68% confidence.Comment: Submitted to Ap

    Ultra-high energy cosmic rays may come from clustered sources

    Get PDF
    Clustering of cosmic-ray sources affects the flux observed beyond the cutoff imposed by the cosmic microwave background and may be important in interpreting the AGASA, Fly's Eye, and HiRes data. The standard deviation, sigma, in the predicted number, N, of events above 10^{20} eV is sigma/N = 0.9(r_0/10 Mpc)^{0.9}, where r_0 is the unknown scale length of the correlation function (r_0 = 10 Mpc for field galaxies). Future experiments will allow the determination of r_0 through the detection of anisotropies in arrival directions of ~ 10^{20} eV cosmic-rays over angular scales of Theta ~ r_0/30 Mpc.Comment: Accepted for publication in Astrophysical Journa

    Universality of power law correlations in gravitational clustering

    Get PDF
    We present an analysis of different sets of gravitational N-body simulations, all describing the dynamics of discrete particles with a small initial velocity dispersion. They encompass very different initial particle configurations, different numerical algorithms for the computation of the force, with or without the space expansion of cosmological models. Despite these differences we find in all cases that the non-linear clustering which results is essentially the same, with a well-defined simple power-law behaviour in the two-point correlations in the range from a few times the lower cut-off in the gravitational force to the scale at which fluctuations are of order one. We argue, presenting quantitative evidence, that this apparently universal behaviour can be understood by the domination of the small scale contribution to the gravitational force, coming initially from nearest neighbor particles.Comment: 7 pages, latex, 3 postscript figures. Revised version to be published in Europhysics Letters. Contains additional analysis showing more directly the central role of nearest neighbour interactions in the development of power-law correlation
    • 

    corecore