1,726 research outputs found

    Immigration Policy and Economic Development

    Get PDF

    The 'Sphere': A Dedicated Bifurcation Aneurysm Flow-Diverter Device.

    Get PDF
    We present flow-based results from the early stage design cycle, based on computational modeling, of a prototype flow-diverter device, known as the 'Sphere', intended to treat bifurcation aneurysms of the cerebral vasculature. The device is available in a range of diameters and geometries and is constructed from a single loop of NITINOL(®) wire. The 'Sphere' reduces aneurysm inflow by means of a high-density, patterned, elliptical surface that partially occludes the aneurysm neck. The device is secured in the healthy parent vessel by two armatures in the shape of open loops, resulting in negligible disruption of parent or daughter vessel flow. The device is virtually deployed in six anatomically accurate bifurcation aneurysms: three located at the Basilar tip and three located at the terminus bifurcation of the Internal Carotid artery (at the meeting of the middle cerebral and anterior cerebral arteries). Both steady state and transient flow simulations reveal that the device presents with a range of aneurysm inflow reductions, with mean flow reductions falling in the range of 30.6-71.8% across the different geometries. A significant difference is noted between steady state and transient simulations in one geometry, where a zone of flow recirculation is not captured in the steady state simulation. Across all six aneurysms, the device reduces the WSS magnitude within the aneurysm sac, resulting in a hemodynamic environment closer to that of a healthy vessel. We conclude from extensive CFD analysis that the 'Sphere' device offers very significant levels of flow reduction in a number of anatomically accurate aneurysm sizes and locations, with many advantages compared to current clinical cylindrical flow-diverter designs. Analysis of the device's mechanical properties and deployability will follow in future publications

    Border parasites: schistosomiasis control among Uganda's fisherfolk

    Get PDF
    Copyright @ 2012 Taylor & Francis. This article has been made publically available through the Brunel Open Access Publishing Fund.It is recognized that the control of schistosomisais in Uganda requires a focus on fisherfolk. Large numbers suffer from this water-borne parasitic disease; notably along the shores of lakes Albert and Victoria and along the River Nile. Since 2004, a policy has been adopted of providing drugs, free of charge, to all those at risk. The strategy has been reported to be successful, but closer investigation reveals serious problems. This paper draws upon long-term research undertaken at three locations in northwestern and southeastern Uganda. It highlights consequences of not engaging with the day to day realities of fisherfolk livelihoods; attributable, in part, to the fact that so many fisherfolk live and work in places located at the country’s international borders, and to a related tendency to treat them as "feckless" and "ungovernable". Endeavours to roll out treatment end up being haphazard, erratic and location-specific. In some places, concerted efforts have been made to treat fisherfolk; but there is no effective monitoring, and it is difficult to gauge what proportion have actually swallowed the tablets. In other places, fisherfolk are, in practice, largely ignored, or are actively harassed in ways that make treatment almost impossible. At all sites, the current reliance upon resident "community" drug distributors or staff based at static clinics and schools was found to be flawed.The Schistosomiasis Control Initiative, Imperial College, under the auspices of the Bill and Melinda Gates Foundation

    An FFAG Transport Line for the PAMELA Project

    Get PDF
    The PAMELA project to design an accelerator for hadron therapy using non-scaling Fixed Field Alternating Gradient (NS-FFAG) magnets requires a transport line and gantry to take the beam to the patient. The NS-FFAG principle offers the possibility of a gantry much smaller, lighter and cheaper than conventional designs, with the added ability to accept a wide range of fast changing energies. This paper will build on previous work to investigate a transport line which could be used for the PAMELA project. The design is presented along with a study and optimisation of its acceptance

    Hannelore Emmi Saraph (1936–2020): Her Life in Atomic Physics

    Get PDF
    Hannelore Emmi Saraph was an atomic physicist based at University College London. During the early part of her career, Hannelore’s work was devoted to the study of electron collisions with atoms and ions. Later on, Hannelore made contributions to the Opacity Project and Iron Project

    Virtual flow-diverter treatment planning: The effect of device placement on bifurcation aneurysm haemodynamics

    Get PDF
    Bifurcation aneurysms account for a large fraction of cerebral aneurysms and often present morphologies that render traditional endovascular treatments, such as coiling, challenging and problematic. Flow-diverter stents offer a potentially elegant treatment option for such aneurysms, but clinical use of these devices remains controversial. Specifically, the deployment of a flow-diverter device in a bifurcation entails jailing one or more potentially vital vessels with a low-porosity mesh designed to restrict the flow. When multiple device placement configurations exist, the most appropriate clinical decision becomes increasingly opaque. In this study, three bifurcation aneurysm geometries were virtually treated by flow-diverter device. Each aneurysm was selected to offer two possible device deployment positions. Flow-diverters similar to commercially available designs were deployed with a fast-deployment algorithm before transient and steady state computational fluid dynamics simulations were performed. Reductions in aneurysm inflow, mean wall shear stress and maximum wall shear stress, all factors often linked with aneurysm treatment outcome, were compared for different device configurations in each aneurysm. In each of the three aneurysms modelled, a particular preferential device placement was shown to offer superior performance with the greatest reduction in the flow metrics considered. In all the three aneurysm geometries, substantial variations in inflow reduction (up to 25.3%), mean wall shear stress reduction (up to 14.6%) and maximum wall shear stress reduction (up to 12.1%) were seen, which were all attributed to device placement alone. Optimal device placement was found to be non-trivial and highly aneurysm specific; in only one-third of the simulated geometries, the best overall performance was achieved by deploying a device in the daughter vessel with the highest flow rate. Good correspondence was seen between transient results and steady state computations that offered a significant reduction in simulation run time. If accurate steady state computations are combined with the fast-deployment algorithm used, the modest run time and corresponding hardware make a virtual treatment pipeline in the clinical setting a meaningful possibility

    Spin-dipole induced lifetime of the least-bound quintet sigma state of He(2S)+He(2S)

    Full text link
    The properties of the least-bound vibrational level (v=14) of the quintet sigma state formed during the ultracold collision of two spin-polarized metastable helium atoms are crucial to studies of photoassociation spectroscopy of metastable helium. We report a calculation of the autoionization lifetime of this state induced by spin-dipole coupling of the quintet sigma state to the singlet sigma state from which Penning and associative ionization processes are highly probable. We find a lifetime of about 150 microseconds, significantly larger than the recent experimental estimates of (4-5) microseconds.Comment: REVTEX4, four double-column page

    The Neutrophil-Lymphocyte Ratio and Locoregional Melanoma: A Multicentre Cohort Study

    No full text
    Objectives The neutrophil–lymphocyte ratio (NLR) is an inflammatory biomarker which is useful in cancer prognostication. We aimed to investigate the differences in baseline NLR between patients with localised and metastatic cutaneous melanoma and how this biomarker changed over time with the recurrence of disease. Methods This multicentre cohort study describes patients treated for Stage I–III cutaneous melanoma over 10 years. The baseline NLR was measured immediately prior to surgery and again at the time of discharge or disease recurrence. The odds ratios (OR) for sentinel node involvement are estimated using mixed-effects logistic regression. The risk of recurrence is estimated using multivariable Cox regression. Results Overall 1489 individuals were included. The mean baseline NLR was higher in patients with palpable nodal disease compared to those with microscopic nodal or localised disease (2.8 versus 2.4 and 2.3, respectively; p < 0.001). A baseline NLR ≥ 2.3 was associated with 30% higher odds of microscopic metastatic melanoma in the sentinel lymph node [adjusted OR 1.3 (95% CI 1.3, 1.3)]. Following surgery, 253 patients (18.7%) developed recurrent melanoma during surveillance although there was no statistically significant association between the baseline NLR and the risk of recurrence [adjusted HR 0.9 (0.7, 1.1)]. Conclusion The NLR is associated with the volume of melanoma at presentation and may predict occult sentinel lymph metastases. Further prospective work is required to investigate how NLR may be modelled against other clinicopathological variables to predict outcomes and to understand the temporal changes in NLR following surgery for melanoma

    Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and their Isotopes

    Get PDF
    A solar photospheric "thermal profiling" analysis is presented, exploiting the infrared rovibrational bands of carbon monoxide (CO) as observed with the McMath-Pierce Fourier transform spectrometer (FTS) at Kitt Peak, and from above the Earth's atmosphere by the Shuttle-borne ATMOS experiment. Visible continuum intensities and center-limb behavior constrained the temperature profile of the deep photosphere, while CO center-limb behavior defined the thermal structure at higher altitudes. The oxygen abundance was self consistently determined from weak CO absorptions. Our analysis was meant to complement recent studies based on 3-D convection models which, among other things, have revised the historical solar oxygen (and carbon) abundance downward by a factor of nearly two; although in fact our conclusions do not support such a revision. Based on various considerations, an oxygen abundance of 700+/-100 ppm (parts per million relative to hydrogen) is recommended; the large uncertainty reflects the model sensitivity of CO. New solar isotopic ratios also are reported for 13C, 17O, and 18O.Comment: 90 pages, 19 figures (some with parts "a", "b", etc.); to be published in the Astrophysical Journal Supplement
    corecore