7 research outputs found

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    Get PDF
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait

    Biases and Reconciliation in Estimates of Linkage Disequilibrium in the Human Genome

    Get PDF
    Genetic association studies of common disease often rely on linkage disequilibrium (LD) along the human genome and in the population under study. Although understanding the characteristics of this correlation has been the focus of many large-scale surveys (culminating in genomewide haplotype maps), the results of different studies have yielded wide-ranging estimates. Since understanding these differences (and whether they can be reconciled) has important implications for whole-genome association studies, in this article we dissect biases in these estimations that are due to known aspects of study design and analytic methodology. In particular, we document in the empirical data that the long-known complicating effects of allele frequency, marker density, and sample size largely reconcile all large-scale surveys. Two exceptions are an underappraisal of redundancy among single-nucleotide polymorphisms (SNPs) when evaluation is limited to short regions (as in candidate-gene resequencing studies) and an inflation in the extent of LD in HapMap phase I, which is likely due to oversampling of specific haplotypes in the creation of the public SNP map. Understanding these factors can guide the understanding of empirical LD surveys and has implications for genetic association studies

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    No full text
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    No full text
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait

    The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution

    No full text
    corecore