44 research outputs found

    Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model

    Full text link
    [EN] This study was conducted to demonstrate how a vitrified embryo transfer procedure incurs phenotypic and molecular changes throughout life. This study reports the first evidence describing that embryonic manipulation during a vitrified embryo transfer cycle induced molecular modifications, concerning oxidative phosphorylation and dysregulations in zinc and lipid metabolism in liver tissue, which has been reported as responsible for postnatal variations of the phenotype. Nowadays, assisted reproductive technologies (ARTs) are considered valuable contributors to our past, but a future without their use is inconceivable. However, in recent years, several studies have evidenced a potential impact of ART on long-term development in mammal species. To date, the long-term follow-up data are still limited. So far, studies have mainly focused on in vitro fertilization or in vitro culture, with information from gametes/embryos cryopreservation field being practically missing. Herein, we report an approach to determine whether a vitrified embryo transfer procedure would have long-term consequences on the offspring. Using the rabbit as a model, we compared animals derived from vitrified-transferred embryos versus those naturally conceived, studying the growth performance, plus the weight throughout life, and the internal organs/tissues phenotype. The healthy status was assessed over the hematological and biochemical parameters in peripheral blood. Additionally, a comparative proteomic analysis was conducted in the liver tissue to investigate molecular cues related to vitrified embryo transfer in an adult tissue. After vitrified embryo transfer, birth weight was increased, and the growth performance was diminished in a sex-specific manner. In addition, vitrified-transferred animals showed significantly lower body, liver and heart weights in adulthood. Molecular analyses revealed that vitrified embryo transfer triggers reprogramming of the liver proteome. Functional analysis of the differentially expressed proteins showed changes in relation to oxidative phosphorylation and dysregulations in the zinc and lipid metabolism, which has been reported as possible causes of a disturbed growth pattern. Therefore, we conclude that vitrified embryo transfer is not a neutral procedure, and it incurs long-term effects in the offspring both at phenotypic and molecular levels. These results described a striking example of the developmental plasticity exhibited by the mammalian embryo.Funding from the Ministry of Economy, Industry and Competitiveness (Research project: AGL2017-85162-C2-1-R and AGL2014-53405-C2-1-P) is acknowledged. X.G.D. was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429).Garcia-Dominguez, X.; Marco-Jiménez, F.; Peñaranda, D.; Vicente Antón, JS. (2020). Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model. Animals. 10(6):1-16. https://doi.org/10.3390/ani10061043S116106Crawford, G., & Ledger, W. (2018). In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG: An International Journal of Obstetrics & Gynaecology, 126(2), 237-243. doi:10.1111/1471-0528.15526Findlay, J. K., Holland, M. K., & Wong, B. B. M. (2019). Reproductive science and the future of the planet. Reproduction, 158(3), R91-R96. doi:10.1530/rep-18-0640Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-xFeuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xDuranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9Belva, F., Bonduelle, M., Roelants, M., Michielsen, D., Van Steirteghem, A., Verheyen, G., & Tournaye, H. (2016). Semen quality of young adult ICSI offspring: the first results. Human Reproduction, 31(12), 2811-2820. doi:10.1093/humrep/dew245Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016Feuer, S. K., Liu, X., Donjacour, A., Lin, W., Simbulan, R. K., Giritharan, G., … Rinaudo, P. F. (2014). Use of a Mouse In Vitro Fertilization Model to Understand the Developmental Origins of Health and Disease Hypothesis. Endocrinology, 155(5), 1956-1969. doi:10.1210/en.2013-2081Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804Dulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589Fischer, B., Chavatte-Palmer, P., Viebahn, C., Navarrete Santos, A., & Duranthon, V. (2012). Rabbit as a reproductive model for human health. REPRODUCTION, 144(1), 1-10. doi:10.1530/rep-12-0091Servick, K. (2014). Unsettled questions trail IVF’s success. Science, 345(6198), 744-746. doi:10.1126/science.345.6198.744De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053Zucker, I., & Beery, A. K. (2010). Males still dominate animal studies. Nature, 465(7299), 690-690. doi:10.1038/465690aKineman, R. D., del Rio-Moreno, M., & Sarmento-Cabral, A. (2018). 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. Journal of Molecular Endocrinology, 61(1), T187-T198. doi:10.1530/jme-18-0076Adamek, A., & Kasprzak, A. (2018). Insulin-Like Growth Factor (IGF) System in Liver Diseases. International Journal of Molecular Sciences, 19(5), 1308. doi:10.3390/ijms19051308Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025Ding, C., Li, Y., Guo, F., Jiang, Y., Ying, W., Li, D., … He, F. (2016). A Cell-type-resolved Liver Proteome. Molecular & Cellular Proteomics, 15(10), 3190-3202. doi:10.1074/mcp.m116.060145Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 68(5), 850-858. doi:10.1021/ac950914hShilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., … Schaeffer, D. A. (2007). The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra. Molecular & Cellular Proteomics, 6(9), 1638-1655. doi:10.1074/mcp.t600050-mcp200Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., … Vizcaíno, J. A. (2018). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 47(D1), D442-D450. doi:10.1093/nar/gky1106Moore, D. M., Zimmerman, K., & Smith, S. A. (2015). Hematological Assessment in Pet Rabbits. Clinics in Laboratory Medicine, 35(3), 617-627. doi:10.1016/j.cll.2015.05.010MA Kamel, R. (2013). Assisted Reproductive Technology after the birth of Louise Brown. Gynecology & Obstetrics, 03(03). doi:10.4172/2161-0932.1000156Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010Cifre, J., Baselga, M., Gómez, E. A., & de la Luz, G. M. (1999). Effect of embryo cryopreservation techniques on reproductive and growth traits in rabbits. Annales de Zootechnie, 48(1), 15-24. doi:10.1051/animres:19990102Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019Spijkers, S., Lens, J. W., Schats, R., & Lambalk, C. B. (2017). Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecologic and Obstetric Investigation, 82(6), 538-546. doi:10.1159/000468935Hann, M., Roberts, S. A., D’Souza, S. W., Clayton, P., Macklon, N., & Brison, D. R. (2018). The growth of assisted reproductive treatment-conceived children from birth to 5 years: a national cohort study. BMC Medicine, 16(1). doi:10.1186/s12916-018-1203-7Chen, Z., Robbins, K. M., Wells, K. D., & Rivera, R. M. (2013). Large offspring syndrome. Epigenetics, 8(6), 591-601. doi:10.4161/epi.24655Gidenne, T., Combes, S., Feugier, A., Jehl, N., Arveux, P., Boisot, P., … Verdelhan, S. (2009). Feed restriction strategy in the growing rabbit. 2. Impact on digestive health, growth and carcass characteristics. Animal, 3(4), 509-515. doi:10.1017/s1751731108003790Velazquez, M. A., Sheth, B., Smith, S. J., Eckert, J. J., Osmond, C., & Fleming, T. P. (2018). Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(2), 590-600. doi:10.1016/j.bbadis.2017.11.020Donjacour, A., Liu, X., Lin, W., Simbulan, R., & Rinaudo, P. F. (2014). In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1. Biology of Reproduction, 90(4). doi:10.1095/biolreprod.113.113134Mahsoudi, B., Li, A., & O’Neill, C. (2007). Assessment of the Long-Term and Transgenerational Consequences of Perturbing Preimplantation Embryo Development in Mice1. Biology of Reproduction, 77(5), 889-896. doi:10.1095/biolreprod.106.057885Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465Fernandez-Gonzalez, R., Moreira, P., Bilbao, A., Jimenez, A., Perez-Crespo, M., Ramirez, M. A., … Gutierrez-Adan, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proceedings of the National Academy of Sciences, 101(16), 5880-5885. doi:10.1073/pnas.0308560101Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., & Gutierrez-Adan, A. (2012). Male Mice Produced by In Vitro Culture Have Reduced Fertility and Transmit Organomegaly and Glucose Intolerance to Their Male Offspring1. Biology of Reproduction, 87(2). doi:10.1095/biolreprod.112.100743Riesche, L., & Bartolomei, M. (2018). Assisted Reproductive Technologies and the Placenta: Clinical, Morphological, and Molecular Outcomes. Seminars in Reproductive Medicine, 36(03/04), 240-248. doi:10.1055/s-0038-1676640Hyatt, M. A., Budge, H., & Symonds, M. E. (2008). Early developmental influences on hepatic organogenesis. Organogenesis, 4(3), 170-175. doi:10.4161/org.4.3.6849Møller, S., & Bernardi, M. (2013). Interactions of the heart and the liver. European Heart Journal, 34(36), 2804-2811. doi:10.1093/eurheartj/eht246Peterside, I. E., Selak, M. A., & Simmons, R. A. (2003). Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. American Journal of Physiology-Endocrinology and Metabolism, 285(6), E1258-E1266. doi:10.1152/ajpendo.00437.2002Von Kleist-Retzow, J.-C., Cormier-Daire, V., Viot, G., Goldenberg, A., Mardach, B., Amiel, J., … De Lonlay, P. (2003). Antenatal manifestations of mitochondrial respiratory chain deficiency. The Journal of Pediatrics, 143(2), 208-212. doi:10.1067/s0022-3476(03)00130-6Hüttemann, M., Lee, I., Samavati, L., Yu, H., & Doan, J. W. (2007). Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1773(12), 1701-1720. doi:10.1016/j.bbamcr.2007.10.001Gibson, K., Halliday, J. L., Kirby, D. M., Yaplito-Lee, J., Thorburn, D. R., & Boneh, A. (2008). Mitochondrial Oxidative Phosphorylation Disorders Presenting in Neonates: Clinical Manifestations and Enzymatic and Molecular Diagnoses. PEDIATRICS, 122(5), 1003-1008. doi:10.1542/peds.2007-3502Abu-Libdeh, B., Douiev, L., Amro, S., Shahrour, M., Ta-Shma, A., Miller, C., … Saada, A. (2017). Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. European Journal of Human Genetics, 25(10), 1142-1146. doi:10.1038/ejhg.2017.112Hara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T., & Iwata, H. (2018). Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLOS ONE, 13(10), e0204571. doi:10.1371/journal.pone.0204571Singh, A., Prasad, K. N., Singh, A. K., Singh, S. K., Gupta, K. K., Paliwal, V. K., … Gupta, R. K. (2016). Human Glutathione S-Transferase Enzyme Gene Polymorphisms and Their Association With Neurocysticercosis. Molecular Neurobiology, 54(4), 2843-2851. doi:10.1007/s12035-016-9779-4Almazroo, O. A., Miah, M. K., & Venkataramanan, R. (2017). Drug Metabolism in the Liver. Clinics in Liver Disease, 21(1), 1-20. doi:10.1016/j.cld.2016.08.001Bird, A. J. (2015). Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. The Journal of Nutritional Biochemistry, 26(11), 1103-1115. doi:10.1016/j.jnutbio.2015.08.002Xia, X., Jiang, S.-W., Zhang, Y., Hu, Y., Yi, H., Liu, J., … Liu, J. (2019). Serum levels of trace elements in children born after assisted reproductive technology. Clinica Chimica Acta, 495, 664-669. doi:10.1016/j.cca.2018.09.032Li, B., Xiao, X., Chen, S., Huang, J., Ma, Y., Tang, N., … Wang, X. (2016). Changes of Phospholipids in Fetal Liver of Mice Conceived by In Vitro Fertilization1. Biology of Reproduction, 94(5). doi:10.1095/biolreprod.115.136325Guo, X.-Y., Liu, X.-M., Jin, L., Wang, T.-T., Ullah, K., Sheng, J.-Z., & Huang, H.-F. (2017). Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertility and Sterility, 107(3), 622-631.e5. doi:10.1016/j.fertnstert.2016.12.007Miles, H. L., Hofman, P. L., Peek, J., Harris, M., Wilson, D., Robinson, E. M., … Cutfield, W. S. (2007). In Vitro Fertilization Improves Childhood Growth and Metabolism. The Journal of Clinical Endocrinology & Metabolism, 92(9), 3441-3445. doi:10.1210/jc.2006-246

    Feed restriction regime in a rabbit line selected for growth rate alters oocyte maturation manifested by alteration in msy2 gene expression

    Full text link
    [EN] Young rabbit females selected for growth rate may have nutritional needs, which may not be met with the common practice of feed restriction during rearing in commercial rabbit production. The aim of this study was to analyse whether two different feeding programmes: ad libitum or restricted (130 g/day) feeding, applied in young rabbit females for 1 month at the end of rearing, could modulate the origin of ovulation process and the quality of the oocytes. At 16 weeks of age, 34 females were randomly assigned to restricted or ad libitum feeding, maintaining these conditions for a month. Then, in an initial experiment, transcriptional profiling of hypothalamus-hypophysis tissue was performed to assess failure to ovulate. In the second experiment, the gene expression analysis of some candidate genes related to oocytes quality was performed. Our results demonstrated that neither of the two feeding programmes modified the transcription of hypothalamus-hypophysis tissue, while the only differences in MSYR expression were found in in vivo mature oocytes ready for successful fertilization. Specifically, MSYR was over-expressed in oocytes from females fed ad libitum. MSYR is one of the most abundant proteins in the oocyte and has proven to be a key regulator of maternal RNA transcription and translation. This finding suggests that MSYR gene is a promising gene in our understanding of the relationship between high growth rate and reproductive performance decline.This work was supported by the Spanish Research Projects AGL2014-53405-C2-P and AGL2011-30170-C02-01 (CICYT). Carmen Naturil was supported by a research grant from the Education Ministry of the Valencian Regional Government (programme VALi+d. ACIF/2013/296).Naturil Alfonso, C.; Peñaranda, D.; Vicente Antón, JS.; Marco-Jiménez, F. (2017). Feed restriction regime in a rabbit line selected for growth rate alters oocyte maturation manifested by alteration in msy2 gene expression. Reproduction in Domestic Animals. 52(6):976-984. https://doi.org/10.1111/rda.13006S976984526Alexander, B. M., Kiyma, Z., McFarland, M., Van Kirk, E. A., Hallford, D. M., Hawkins, D. E., … Moss, G. E. (2007). Influence of short-term fasting during the luteal phase of the estrous cycle on ovarian follicular development during the ensuing proestrus of ewes. Animal Reproduction Science, 97(3-4), 356-363. doi:10.1016/j.anireprosci.2006.01.012Armstrong, D. G., McEvoy, T. G., Baxter, G., Robinson, J. J., Hogg, C. O., Woad, K. J., … Sinclair, K. D. (2001). Effect of Dietary Energy and Protein on Bovine Follicular Dynamics and Embryo Production In Vitro: Associations with the Ovarian Insulin-Like Growth Factor System1. Biology of Reproduction, 64(6), 1624-1632. doi:10.1095/biolreprod64.6.1624Ashworth, C. J., Beattie, L., & Antipatis, C. (1999). Effects of pre- and post-mating nutritional status on hepatic function, progesterone concentration, uterine protein secretion and embryo survival in Meishan pigs. Reproduction, Fertility and Development, 11(1), 67. doi:10.1071/rd99007Ashworth, C. J., Beattie, L., Antipatis, C., & Vallet, J. L. (1999). Effects of pre- and post-mating feed intake on blastocyst size, secretory function and glucose metabolism in Meishan gilts. Reproduction, Fertility and Development, 11(6), 323. doi:10.1071/rd99040Balasubramanian, P., Jagannathan, L., Mahaley, R. E., Subramanian, M., Gilbreath, E. T., MohanKumar, P. S., & MohanKumar, S. M. J. (2012). High Fat Diet Affects Reproductive Functions in Female Diet-Induced Obese and Dietary Resistant Rats. Journal of Neuroendocrinology, 24(5), 748-755. doi:10.1111/j.1365-2826.2011.02276.xBoland, M. P., Lonergan, P., & O’Callaghan, D. (2001). Effect of nutrition on endocrine parameters, ovarian physiology, and oocyte and embryo development. Theriogenology, 55(6), 1323-1340. doi:10.1016/s0093-691x(01)00485-xBrecchia, G., Bonanno, A., Galeati, G., Federici, C., Maranesi, M., Gobbetti, A., … Boiti, C. (2006). Hormonal and metabolic adaptation to fasting: Effects on the hypothalamic–pituitary–ovarian axis and reproductive performance of rabbit does. Domestic Animal Endocrinology, 31(2), 105-122. doi:10.1016/j.domaniend.2005.09.006Daoud, N. M., Mahrous, K. F., & Ezzo, O. H. (2012). Feed restriction as a biostimulant of the production of oocyte, their quality and GDF-9 gene expression in rabbit oocytes. Animal Reproduction Science, 136(1-2), 121-127. doi:10.1016/j.anireprosci.2012.09.011De la Fuente, L. F., & Rosell, J. M. (2012). Body weight and body condition of breeding rabbits in commercial units1. Journal of Animal Science, 90(9), 3252-3258. doi:10.2527/jas.2011-4764Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527Ferguson, E., Ashworth, C., Edwards, S., Hawkins, N., Hepburn, N., & Hunter, M. (2003). Effect of different nutritional regimens before ovulation on plasma concentrations of metabolic and reproductive hormones and oocyte maturation in gilts. Reproduction, 61-71. doi:10.1530/rep.0.1260061García-García, R. M., Rebollar, P. G., Arias-Álvarez, M., Sakr, O. G., Bermejo-Álvarez, P., Brecchia, G., … Lorenzo, P. L. (2011). Acute fasting before conception affects metabolic and endocrine status without impacting follicle and oocyte development and embryo gene expression in the rabbit. Reproduction, Fertility and Development, 23(6), 759. doi:10.1071/rd10298Gerke, V., Creutz, C. E., & Moss, S. E. (2005). Annexins: linking Ca2+ signalling to membrane dynamics. Nature Reviews Molecular Cell Biology, 6(6), 449-461. doi:10.1038/nrm1661Gerstner, J. R., & Landry, C. F. (2006). Expression of the Transcriptional Coactivator CITED1 in the Adult and Developing Murine Brain. Developmental Neuroscience, 29(3), 203-212. doi:10.1159/000096389Gil, S. Y., Youn, B.-S., Byun, K., Huang, H., Namkoong, C., Jang, P.-G., … Kim, M.-S. (2013). Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway. Nature Communications, 4(1). doi:10.1038/ncomms2896Gu, W., Tekur, S., Reinbold, R., Eppig, J. J., Choi, Y.-C., Zheng, J. Z., … Hecht, N. B. (1998). Mammalian Male and Female Germ Cells Express a Germ Cell-Specific Y-Box Protein, MSY21. Biology of Reproduction, 59(5), 1266-1274. doi:10.1095/biolreprod59.5.1266Haider, S., & Knöfler, M. (2009). Human Tumour Necrosis Factor: Physiological and Pathological Roles in Placenta and Endometrium. Placenta, 30(2), 111-123. doi:10.1016/j.placenta.2008.10.012Han, J., & Townes-Anderson, E. (2012). Cell Specific Post-Translational Processing of Pikachurin, A Protein Involved in Retinal Synaptogenesis. PLoS ONE, 7(12), e50552. doi:10.1371/journal.pone.0050552Jung, U., & Choi, M.-S. (2014). Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 15(4), 6184-6223. doi:10.3390/ijms15046184Kiyma, Z., Alexander, B. M., Van Kirk, E. A., Murdoch, W. J., Hallford, D. M., & Moss, G. E. (2004). Effects of feed restriction on reproductive and metabolic hormones in ewes. Journal of Animal Science, 82(9), 2548-2557. doi:10.2527/2004.8292548xLabrecque, R., Vigneault, C., Blondin, P., & Sirard, M.-A. (2014). Gene expression analysis of bovine oocytes at optimal coasting time combined with GnRH antagonist during the no-FSH period. Theriogenology, 81(8), 1092-1100. doi:10.1016/j.theriogenology.2014.01.037Leali, D., Inforzato, A., Ronca, R., Bianchi, R., Belleri, M., Coltrini, D., … Presta, M. (2012). Long Pentraxin 3/Tumor Necrosis Factor-Stimulated Gene-6 Interaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(3), 696-703. doi:10.1161/atvbaha.111.243998Llobat, L., Marco-Jiménez, F., Peñaranda, D., Saenz-de-Juano, M., & Vicente, J. (2011). Effect of Embryonic Genotype on Reference Gene Selection for RT-qPCR Normalization. Reproduction in Domestic Animals, 47(4), 629-634. doi:10.1111/j.1439-0531.2011.01934.xMartin, B., Golden, E., Carlson, O. D., Egan, J. M., Mattson, M. P., & Maudsley, S. (2008). Caloric restriction: Impact upon pituitary function and reproduction. Ageing Research Reviews, 7(3), 209-224. doi:10.1016/j.arr.2008.01.002Martínez-Paredes, E., Ródenas, L., Pascual, J. J., Blas, E., Brecchia, G., Boiti, C., & Cervera, C. (2015). Effects of rearing feeding programme on the young rabbit females’ behaviour and welfare indicators. World Rabbit Science, 23(3), 197. doi:10.4995/wrs.2015.3987McEvoy, T. G., Robinson, J. J., Aitken, R. P., Findlay, P. A., Palmer, R. M., & Robertson, I. S. (1995). Dietary-induced suppression of pre-ovulatory progesterone concentrations in superovulated ewes impairs the subsequent in vivo and in vitro development of their ova. Animal Reproduction Science, 39(2), 89-107. doi:10.1016/0378-4320(95)01392-dMoussa, M., Shu, J., Zhang, X. H., & Zeng, F. (2015). Maternal control of oocyte quality in cattle «a review». Animal Reproduction Science, 155, 11-27. doi:10.1016/j.anireprosci.2015.01.011Naturil-Alfonso, C., Lavara, R., Millán, P., Rebollar, P. G., Vicente, J. S., & Marco-Jiménez, F. (2016). Study of failures in a rabbit line selected for growth rate. World Rabbit Science, 24(1), 47. doi:10.4995/wrs.2016.4016Naturil-Alfonso, C., Lavara, R., Vicente, J., & Marco-Jiménez, F. (2015). Effects of Female Dietary Restriction in a Rabbit Growth Line During Rearing on Reproductive Performance and Embryo Quality. Reproduction in Domestic Animals, 51(1), 114-122. doi:10.1111/rda.12653Naturil-Alfonso, C., Marco-Jiménez, F., Jiménez-Trigos, E., Saenz-de-Juano, M., Viudes-de-Castro, M., Lavara, R., & Vicente, J. (2015). Role of Embryonic and Maternal Genotype on Prenatal Survival and Foetal Growth in Rabbit. Reproduction in Domestic Animals, 50(2), 312-320. doi:10.1111/rda.12493O’Callaghan, D., Yaakub, H., Hyttel, P., Spicer, L., & Boland, M. (2000). Effect of nutrition and superovulation on oocyte morphology, follicular fluid composition and systemic hormone concentrations in ewes. Reproduction, 118(2), 303-313. doi:10.1530/jrf.0.1180303Papadopoulos, S., Lonergan, P., Gath, V., Quinn, K. M., Evans, A. C. O., O’Callaghan, D., & Boland, M. P. (2001). Effect of diet quantity and urea supplementation on oocyte and embryo quality in sheep. Theriogenology, 55(5), 1059-1069. doi:10.1016/s0093-691x(01)00466-6Pascual, J. J., Castella, F., Cervera, C., Blas, E., & Fernández-Carmona, J. (2000). The use of ultrasound measurement of perirenal fat thickness to estimate changes in body condition of young female rabbits. Animal Science, 70(3), 435-442. doi:10.1017/s135772980005178xRomanatto, T., Cesquini, M., Amaral, M. E., Roman, É. A., Moraes, J. C., Torsoni, M. A., … Velloso, L. A. (2007). TNF-α acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient—Effects on leptin and insulin signaling pathways. Peptides, 28(5), 1050-1058. doi:10.1016/j.peptides.2007.03.006Rommers, J. M., Meijerhof, R., Noordhuizen, J. P. T. M., & Kemp, B. (2004). Effect of feeding program during rearing and age at first insemination on performances during subsequent reproduction in young rabbit does. Reproduction Nutrition Development, 44(4), 321-332. doi:10.1051/rnd:2004037Smith, J. T., Acohido, B. V., Clifton, D. K., & Steiner, R. A. (2006). KiSS-1 Neurones Are Direct Targets for Leptin in the ob/ob Mouse. Journal of Neuroendocrinology, 18(4), 298-303. doi:10.1111/j.1365-2826.2006.01417.xSzendrő, Z., Szendrő, K., & Zotte, A. D. (2012). Management of Reproduction on Small, Medium and Large Rabbit Farms: A Review. Asian-Australasian Journal of Animal Sciences, 25(5), 738-748. doi:10.5713/ajas.2012.12015Vicente, J. S., Llobat, L., Viudes-de-Castro, M. P., Lavara, R., Baselga, M., & Marco-Jiménez, F. (2012). Gestational losses in a rabbit line selected for growth rate. Theriogenology, 77(1), 81-88. doi:10.1016/j.theriogenology.2011.07.019Vicente, J. S., María Pilar Viudes-De-Castro, María de la Luz García, & Baselga, M. (2003). Effect of rabbit line on a program of cryopreserved embryos by vitrification. Reproduction Nutrition Development, 43(2), 137-143. doi:10.1051/rnd:2003011Viudes-de-Castro, M. P., & Vicente, J. S. (1997). Effect of sperm count on the fertility and prolificity rates of meat rabbits. Animal Reproduction Science, 46(3-4), 313-319. doi:10.1016/s0378-4320(96)01628-4Wulf, P., & Suter, U. (1999). Embryonic expression of epithelial membrane protein 1 in early neurons. Developmental Brain Research, 116(2), 169-180. doi:10.1016/s0165-3806(99)00092-9Xiccato, G., & Trocino, A. (s. f.). Energy and protein metabolism and requirements. Nutrition of the rabbit, 83-118. doi:10.1079/9781845936693.0083Yan, J., Zhou, B., Yang, J., Tai, P., Chen, X., Zhang, H., … Xia, G. (2008). Glucose can reverse the effects of acute fasting on mouse ovulation and oocyte maturation. Reproduction, Fertility and Development, 20(6), 703. doi:10.1071/rd08034Yu, J., Deng, M., Medvedev, S., Yang, J., Hecht, N. B., & Schultz, R. M. (2004). Transgenic RNAi-mediated reduction of MSY2 in mouse oocytes results in reduced fertility. Developmental Biology, 268(1), 195-206. doi:10.1016/j.ydbio.2003.12.020Yu, J., Hecht, N. B., & Schultz, R. M. (2001). Expression of MSY2 in Mouse Oocytes and Preimplantation Embryos1. Biology of Reproduction, 65(4), 1260-1270. doi:10.1095/biolreprod65.4.126

    Successful inclusion of high vegetable protein sources in feed for rainbow trout without decrement in intestinal health

    Full text link
    [EN] A reduction in fishmeal in diets is essential to achieve the aim of sustainable production. In the current work, using a plant protein blend of wheat gluten, wheat and soybean meal supplemented with Tau, Val, Lys and Met, a 10% higher fishmeal substitution without affecting growth and health parameters has been accomplished. The aquaculture of carnivorous fish is in continuous expansion, which leads to the need to reduce the dependence on fishmeal (FM). Plant proteins (PP) represent a suitable protein alternative to FM and are increasingly used in fish feed. However, PP may lead to stunted growth and enteritis. In the current study, the effect of high FM substitution by PP sources on the growth, mortality and intestinal health of rainbow trout (Oncorhynchus mykiss) was evaluated in terms of the histological intestine parameters and expression of genes related to inflammation (IL-1 beta, IL-8 and TGF-beta) and immune responses (Transferrin, IgT and IFN-gamma). The results show that a total substitution registered lower growth and survival rates, probably due to a disruption to the animal's health. Confirming this hypothesis, fish fed FM0 showed histological changes in the intestine and gene changes related to inflammatory responses, which in the long-term could have triggered an immunosuppression. The FM10 diet presented not only a similar expression to FM20 (control diet), but also similar growth and survival. Therefore, 90% of FM substitution was demonstrated as being feasible in this species using a PP blend of wheat gluten (WG) and soybean meal (SBM) as a protein source.Vélez-Calabria, G.; Peñaranda, D.; Jover Cerda, M.; Martínez-Llorens, S.; Tomas-Vidal, A. (2021). Successful inclusion of high vegetable protein sources in feed for rainbow trout without decrement in intestinal health. Animals. 11(12):1-18. https://doi.org/10.3390/ani11123577S118111

    Effects of Eco-Organic Feed on Growth Performance, Biometric Indices, and Nutrient Retention of Gilthead Seabream (Sparus aurata)

    Full text link
    [EN] This study examined how eco-organic feed affects the growth performance, nutrient efficiency, feed utilisation, and body composition of gilthead seabream. Six different diets were tested, including a control diet (CONT) without organic ingredients and four diets with 100% organic ingredients: trout (TRO), seabass (SBS), poultry (POU), and mix (MIX), along with a control organic diet (ORG) containing organic ingredients and 30% fishmeal. The experiment lasted 70 days, and the fish were fed twice a day, starting with an initial weight of 60.5 g. The results showed that the highest growth rates were observed in fish fed the ORG and CONT diets containing fishmeal. Conversely, the POU diet resulted in the lowest growth rate, survival rate, and highest value for feed conversion ratio (FCR). Almost all essential amino acid efficiency values were high in fish fed the ORG and CONT diets. Still, significant differences were noted in the retention efficiency of fatty acids across all diets. The retention efficiency was higher in the CONT diet, followed by the ORG diet. However, the economic conversion rate was lower for CONT, SBS, TRO, and MIX. Overall, using organic diets of animal origin impacted the growth performance of gilthead seabream, but it is still a promising approach.This project had been developed with the collaboration of the Biodiversity Foundation (Spanish Ministry for Ecological Transition and the Demographic Challenge), through the Pleamar Program, co-financed by the European Maritime and Fisheries Fund (EMFF). A full scholarship from the Ministry of Higher Education of the Arab Republic of Egypt funds the researcher Eslam TefalTefal, E.; Tomas-Vidal, A.; Martínez-Llorens, S.; Jauralde García, I.; Peñaranda, D.; Jover Cerda, M. (2023). Effects of Eco-Organic Feed on Growth Performance, Biometric Indices, and Nutrient Retention of Gilthead Seabream (Sparus aurata). Sustainability. 15(14):1-16. https://doi.org/10.3390/su151410750116151

    Growth, Survival, and Intestinal Health Alterations in Mediterranean Yellowtail (Seriola dumerili) Due to Alternatives to Fishmeal and Fish Oil

    Get PDF
    [EN] Fishmeal and fish oil substitution in aquafeeds might have adverse effects on fish growth and health, mainly in carnivorous species, such as Mediterranean yellowtail (Seriola dumerili). Mediterranean yellowtail shows great potential as an alternative aquaculture species due to its fast growth and high price on the market, but the need for high-quality protein and fatty acid content in its diets is limiting its production. In order to improve the sustainability of its production, this study was conducted with 360 fish of 35 g to evaluate the effects on fish growth and health. Six diets were used: one control diet without replacement, three with FM replacement (FM66, FM33, and FM0) (33%, 66%, and 100% FM replacement), and two with FO replacement (FO50 and FO0) (50% and 100% FO replacement). The substitution of FM was with vegetable (VM) (corn gluten) and animal (AM) (krill and meat meal) meals. The reductions in FM and FO of up to 33 and 0%, respectively, did not affect the growth and survival of S. dumerili at the intestinal morphology level, except for the anterior intestine regarding the lower villi length and width and the posterior intestine regarding the lower width of the lamina propria. On the other hand, the substitution of fish ingredients in the diet affects liver morphology, indicating alterations in the major diameter of hepatocytes or their nuclei. Finally, diet did not affect the gut microbiota with respect to the control, but significant differences were found in alpha and beta diversity when FO and FM microbiota were compared. A 66% FM replacement and total FO replacement would be possible without causing major alterations in the fish.This study was financed by the Ministerio de Ciencia e Innovación reference: AGL2011-30547-C03-02.Milián-Sorribes, MC.; Martínez-Llorens, S.; Peñaranda, D.; Jauralde García, I.; Jover Cerda, M.; Tomas-Vidal, A. (2024). Growth, Survival, and Intestinal Health Alterations in Mediterranean Yellowtail (Seriola dumerili) Due to Alternatives to Fishmeal and Fish Oil. Current Issues in Molecular Biology. 46(1):753-772. https://doi.org/10.3390/cimb4601004975377246

    Intestinal Explant Cultures from Gilthead Seabream (Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet

    Full text link
    [EN] The interaction between diet and intestinal health has been widely discussed, although in vivo approaches have reported limitations. The intestine explant culture system developed provides an advantage since it reduces the number of experimental fish and increases the time of incubation compared to similar methods, becoming a valuable tool in the study of the interactions between pathogenic bacteria, rearing conditions, or dietary components and fish gut immune response. The objective of this study was to determine the influence of the total substitution of fish meal by plants on the immune intestinal status of seabream using an ex vivo bacterial challenge. For this aim, two growth stages of fish were assayed (12 g): phase I (90 days), up to 68 g, and phase II (305 days), up to 250 g. Additionally, in phase II, the effects of long term and short term exposure (15 days) to a plant protein (PP) diet were determined. PP diet altered the mucosal immune homeostasis, the younger fish being more sensitive, and the intestine from fish fed short-term plant diets showed a higher immune response than with long-term feeding. Vibrio alginolyticus (V. alginolyticus) triggered the highest immune and inflammatory response, while COX-2 expression was significantly induced by Photobacterium damselae subsp. Piscicida (P. damselae subsp. Piscicida), showing a positive high correlation between the pro-inflammatory genes encoding interleukin 1 beta (IL1-beta), interleukin 6 (IL-6) and cyclooxygenase 2(COX-2).The research was supported by a grant financed by the Spanish Ministerio de Economia y Competitividad AGL2015-70487-P. and Generalitat Valenciana, IDIFEDER/2020/029 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. It was additionally granted by Contrato Pre-doctoral para la Formacion de Profesorado Universitario from Subprogramas de Formacion y Movilidad within the Programa Estatal de Promocion del Talento y su Empleabilidad of the Ministerio de Educacion, Cultura y Deporte of Spain.Peñaranda, D.; Bäuerl, C.; Tomas-Vidal, A.; Jover Cerda, M.; Estruch, G.; Pérez Martínez, G.; Martínez-Llorens, S. (2020). Intestinal Explant Cultures from Gilthead Seabream (Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet. International Journal of Molecular Sciences. 21(20):1-20. https://doi.org/10.3390/ijms21207584S1202120Minghetti, M., Drieschner, C., Bramaz, N., Schug, H., & Schirmer, K. (2017). A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biology and Toxicology, 33(6), 539-555. doi:10.1007/s10565-017-9385-xGómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish: Table 1. FEMS Immunology & Medical Microbiology, 52(2), 145-154. doi:10.1111/j.1574-695x.2007.00343.xJose L Gonzalez Vecino, M. H. (2015). Probiotic and Pathogen Ex-vivo Exposure of Atlantic Salmon (Salmo Salar L.) Intestine from Fish Fed Four Different Protein Sources. Journal of Aquaculture Research & Development, 06(05). doi:10.4172/2155-9546.1000340Nematollahi, A., Decostere, A., Ducatelle, R., Haesebrouck, F., & Pasmans, F. (2005). Development of a gut perfusion model as an alternative to the use of live fish. Laboratory Animals, 39(2), 194-199. doi:10.1258/0023677053739710Lin, Y.-C., & Chen, J.-C. (2001). Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1), 109-119. doi:10.1016/s0022-0981(01)00227-1Nematollahi, A., Pasmans, F., Van den Broeck, W., Ducatelle, R., Haesebrouck, F., & Decostere, A. (2005). Association of Flavobacterium psychrophilum strains with intestinal explants of rainbow trout Oncorhynchus mykiss. Diseases of Aquatic Organisms, 67, 67-72. doi:10.3354/dao067067Harper, G. M., Monfort, M., & Saoud, I. P. (2011). An ex vivo approach to studying the interactions of probiotic Pediococcus acidilactici and Vibrio (Listonella) anguillarum in the anterior intestine of rainbow trout Oncorhynchus mykiss. Journal of Aquaculture Research & Development, s1. doi:10.4172/2155-9546.s1-004Løvmo Martinsen, L., Salma, W., Myklebust, R., Mayhew, T. M., & Ringø, E. (2011). Carnobacterium maltaromaticum vs. Vibrio (Listonella) anguillarum in the midgut of Atlantic cod (Gadus morhua L.): an ex vivo study. Aquaculture Research, 42(12), 1830-1839. doi:10.1111/j.1365-2109.2010.02784.xRen, P., Xu, L., Yang, Y., He, S., Liu, W., Ringø, E., & Zhou, Z. (2013). Lactobacillus planarum subsp. plantarum JCM 1149 vs. Aeromonas hydrophila NJ-1 in the anterior intestine and posterior intestine of hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂: An ex vivo study. Fish & Shellfish Immunology, 35(1), 146-153. doi:10.1016/j.fsi.2013.04.023Resau, J. H., Sakamoto, K., Cottrell, J. R., Hudson, E. A., & Meltzer, S. J. (1991). Explant organ culture: A review. Cytotechnology, 7(3), 137-149. doi:10.1007/bf00365924Dame, M. K., Bhagavathula, N., Mankey, C., DaSilva, M., Paruchuri, T., Aslam, M. N., & Varani, J. (2009). Human colon tissue in organ culture: preservation of normal and neoplastic characteristics. In Vitro Cellular & Developmental Biology - Animal, 46(2), 114-122. doi:10.1007/s11626-009-9247-9Bäuerl, C., Llopis, M., Antolín, M., Monedero, V., Mata, M., Zúñiga, M., … Pérez Martínez, G. (2012). Lactobacillus paracasei and Lactobacillus plantarum strains downregulate proinflammatory genes in an ex vivo system of cultured human colonic mucosa. Genes & Nutrition, 8(2), 165-180. doi:10.1007/s12263-012-0301-yMonge-Ortiz, R., Martínez-Llorens, S., Márquez, L., Moyano, F. J., Jover-Cerdá, M., & Tomás-Vidal, A. (2016). Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Archives of Animal Nutrition, 70(2), 155-172. doi:10.1080/1745039x.2016.1141743Oliva-Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35(2), 83-108. doi:10.1111/j.1365-2761.2011.01333.xMartínez-Llorens, S., Moñino, A. V., Tomás Vidal, A., Salvador, V. J. M., Pla Torres, M., & Jover Cerdá, M. (2007). Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquaculture Research, 38(1), 82-90. doi:10.1111/j.1365-2109.2006.01637.xMARTÍNEZ-LLORENS, S., VIDAL, A. T., GARCIA, I. J., TORRES, M. P., & CERDÁ, M. J. (2009). Optimum dietary soybean meal level for maximizing growth and nutrient utilization of on-growing gilthead sea bream (Sparus aurata). Aquaculture Nutrition, 15(3), 320-328. doi:10.1111/j.1365-2095.2008.00597.xKrogdahl, Å., Penn, M., Thorsen, J., Refstie, S., & Bakke, A. M. (2010). Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture Research, 41(3), 333-344. doi:10.1111/j.1365-2109.2009.02426.xKrogdahl, Å., Bakke-McKellep, A. M., & Baeverfjord, G. (2003). Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salarL.). Aquaculture Nutrition, 9(6), 361-371. doi:10.1046/j.1365-2095.2003.00264.xURÁN, P. A., SCHRAMA, J. W., JAAFARI, S., BAARDSEN, G., ROMBOUT, J. H. W. M., KOPPE, W., & VERRETH, J. A. J. (2009). Variation in commercial sources of soybean meal influences the severity of enteritis in Atlantic salmon (Salmo salarL.). Aquaculture Nutrition, 15(5), 492-499. doi:10.1111/j.1365-2095.2008.00615.xKokou, F., Sarropoulou, E., Cotou, E., Rigos, G., Henry, M., Alexis, M., & Kentouri, M. (2015). Effects of Fish Meal Replacement by a Soybean Protein on Growth, Histology, Selected Immune and Oxidative Status Markers of Gilthead Sea Bream, Sparus aurata. Journal of the World Aquaculture Society, 46(2), 115-128. doi:10.1111/jwas.12181Pereira, T. G., & Oliva-Teles, A. (2003). Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquaculture Research, 34(13), 1111-1117. doi:10.1046/j.1365-2109.2003.00909.xMartínez-Llorens, S., Baeza-Ariño, R., Nogales-Mérida, S., Jover-Cerdá, M., & Tomás-Vidal, A. (2012). Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: Amino acid retention, digestibility, gut and liver histology. Aquaculture, 338-341, 124-133. doi:10.1016/j.aquaculture.2012.01.029Sitjà-Bobadilla, A., Peña-Llopis, S., Gómez-Requeni, P., Médale, F., Kaushik, S., & Pérez-Sánchez, J. (2005). Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture, 249(1-4), 387-400. doi:10.1016/j.aquaculture.2005.03.031Estensoro, I., Ballester-Lozano, G., Benedito-Palos, L., Grammes, F., Martos-Sitcha, J. A., Mydland, L.-T., … Pérez-Sánchez, J. (2016). Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil. PLOS ONE, 11(11), e0166564. doi:10.1371/journal.pone.0166564Kokou, F., Sarropoulou, E., Cotou, E., Kentouri, M., Alexis, M., & Rigos, G. (2017). Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream ( Sparus aurata L.). Fish & Shellfish Immunology, 64, 111-121. doi:10.1016/j.fsi.2017.03.017Couso, N., Castro, R., Magariños, B., Obach, A., & Lamas, J. (2003). Effect of oral administration of glucans on the resistance of gilthead seabream to pasteurellosis. Aquaculture, 219(1-4), 99-109. doi:10.1016/s0044-8486(03)00019-xMauri, I., Romero, A., Acerete, L., MacKenzie, S., Roher, N., Callol, A., … Tort, L. (2011). Changes in complement responses in Gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) under crowding stress, plus viral and bacterial challenges. Fish & Shellfish Immunology, 30(1), 182-188. doi:10.1016/j.fsi.2010.10.006Reyes-Becerril, M., López-Medina, T., Ascencio-Valle, F., & Esteban, M. Á. (2011). Immune response of gilthead seabream (Sparus aurata) following experimental infection with Aeromonas hydrophila. Fish & Shellfish Immunology. doi:10.1016/j.fsi.2011.07.006Piazzon, M. C., Galindo-Villegas, J., Pereiro, P., Estensoro, I., Calduch-Giner, J. A., Gómez-Casado, E., … Pérez-Sánchez, J. (2016). Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary Challenges in a Perciform Fish. Frontiers in Immunology, 7. doi:10.3389/fimmu.2016.00637Monge-Ortiz, R., Tomás-Vidal, A., Gallardo-Álvarez, F. J., Estruch, G., Godoy-Olmos, S., Jover-Cerdá, M., & Martínez-Llorens, S. (2018). Partial and total replacement of fishmeal by a blend of animal and plant proteins in diets for Seriola dumerili : Effects on performance and nutrient efficiency. Aquaculture Nutrition, 24(4), 1163-1174. doi:10.1111/anu.12655Torrecillas, S., Caballero, M. J., Mompel, D., Montero, D., Zamorano, M. J., Robaina, L., … Izquierdo, M. (2017). Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass ( Dicentrarchus labrax ) fed low fish meal and fish oil diets. Fish & Shellfish Immunology, 67, 302-311. doi:10.1016/j.fsi.2017.06.022Estruch, G., Collado, M. C., Peñaranda, D. S., Tomás Vidal, A., Jover Cerdá, M., Pérez Martínez, G., & Martinez-Llorens, S. (2015). Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene. PLOS ONE, 10(8), e0136389. doi:10.1371/journal.pone.0136389Estruch, G., Martínez-Llorens, S., Tomás-Vidal, A., Monge-Ortiz, R., Jover-Cerdá, M., Brown, P. B., & Peñaranda, D. S. (2020). Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). Journal of Proteomics, 216, 103672. doi:10.1016/j.jprot.2020.103672Estruch, G., Collado, M. C., Monge-Ortiz, R., Tomás-Vidal, A., Jover-Cerdá, M., Peñaranda, D. S., … Martínez-Llorens, S. (2018). Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veterinary Research, 14(1). doi:10.1186/s12917-018-1626-6Evaluation of Prebiotic and Probiotic Effects on the Intestinal Gut Microbiota and Histology of Atlantic salmon (Salmo salar L.). (2011). Journal of Aquaculture Research & Development, s1. doi:10.4172/2155-9546.s1-009Løkka, G., & Koppang, E. O. (2016). Antigen sampling in the fish intestine. Developmental & Comparative Immunology, 64, 138-149. doi:10.1016/j.dci.2016.02.014Secombes, C. J., Wang, T., Hong, S., Peddie, S., Crampe, M., Laing, K. J., … Zou, J. (2001). Cytokines and innate immunity of fish. Developmental & Comparative Immunology, 25(8-9), 713-723. doi:10.1016/s0145-305x(01)00032-5Gomez, D., Sunyer, J. O., & Salinas, I. (2013). The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish & Shellfish Immunology, 35(6), 1729-1739. doi:10.1016/j.fsi.2013.09.032Krogdahl, Bakke-Mckellep, RØed, & Baeverfjord. (2000). Feeding Atlantic salmonSalmo salarL. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquaculture Nutrition, 6(2), 77-84. doi:10.1046/j.1365-2095.2000.00129.xSalinas, I., Zhang, Y.-A., & Sunyer, J. O. (2011). Mucosal immunoglobulins and B cells of teleost fish. Developmental & Comparative Immunology, 35(12), 1346-1365. doi:10.1016/j.dci.2011.11.009Chasiotis, H., Effendi, J. C., & Kelly, S. P. (2008). Occludin expression in goldfish held in ion-poor water. Journal of Comparative Physiology B, 179(2), 145-154. doi:10.1007/s00360-008-0297-1Sánchez-Lozano, N. B., Martínez-Llorens, S., Tomás-Vidal, A., & Cerdá, M. J. (2009). Effect of high-level fish meal replacement by pea and rice concentrate protein on growth, nutrient utilization and fillet quality in gilthead seabream (Sparus aurata, L.). Aquaculture, 298(1-2), 83-89. doi:10.1016/j.aquaculture.2009.09.028Savan, R., & Sakai, M. (2006). Genomics of fish cytokines. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 1(1), 89-101. doi:10.1016/j.cbd.2005.08.005Torrecillas, S., Montero, D., Caballero, M. J., Robaina, L., Zamorano, M. J., Sweetman, J., & Izquierdo, M. (2015). Effects of dietary concentrated mannan oligosaccharides supplementation on growth, gut mucosal immune system and liver lipid metabolism of European sea bass (Dicentrarchus labrax) juveniles. Fish & Shellfish Immunology, 42(2), 508-516. doi:10.1016/j.fsi.2014.11.033Kono, T., Bird, S., Sonoda, K., Savan, R., Secombes, C. J., & Sakai, M. (2008). Characterization and expression analysis of an interleukin-7 homologue in the Japanese pufferfish, Takifugu rubripes. FEBS Journal, 275(6), 1213-1226. doi:10.1111/j.1742-4658.2008.06281.xPelegrı́n, P., Garcı́a-Castillo, J., Mulero, V., & Meseguer, J. (2001). INTERLEUKIN-1β ISOLATED FROM A MARINE FISH REVEALS UP-REGULATED EXPRESSION IN MACROPHAGES FOLLOWING ACTIVATION WITH LIPOPOLYSACCHARIDE AND LYMPHOKINES. Cytokine, 16(2), 67-72. doi:10.1006/cyto.2001.0949Chaves-Pozo, E., Pelegr�n, P., Garc�a-Castillo, J., Garc�a-Ayala, A., Mulero, V., & Meseguer, J. (2004). Acidophilic granulocytes of the marine fish gilthead seabream ( Sparus aurata L.) produce interleukin-1� following infection with Vibrio anguillarum. Cell and Tissue Research, 316(2), 189-195. doi:10.1007/s00441-004-0875-9Sepulcre, M. P., López-Castejón, G., Meseguer, J., & Mulero, V. (2007). The activation of gilthead seabream professional phagocytes by different PAMPs underlines the behavioural diversity of the main innate immune cells of bony fish. Molecular Immunology, 44(8), 2009-2016. doi:10.1016/j.molimm.2006.09.022Boltaña, S., Tridico, R., Teles, M., Mackenzie, S., & Tort, L. (2014). Lipopolysaccharides isolated from Aeromonas salmonicida and Vibrio anguillarum show quantitative but not qualitative differences in inflammatory outcome in Sparus aurata (Gilthead seabream). Fish & Shellfish Immunology, 39(2), 475-482. doi:10.1016/j.fsi.2014.06.003Newton, R., Seybold, J., Liu, S. F., & Barnes, P. J. (1997). Alternate COX-2 Transcripts Are Differentially Regulated: Implications for Post-Transcriptional Control. Biochemical and Biophysical Research Communications, 234(1), 85-89. doi:10.1006/bbrc.1997.6586Bogdan, C., Röllinghoff, M., & Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, 12(1), 64-76. doi:10.1016/s0952-7915(99)00052-7Petit, J., Embregts, C. W. E., Forlenza, M., & Wiegertjes, G. F. (2019). Evidence of Trained Immunity in a Fish: Conserved Features in Carp Macrophages. The Journal of Immunology, 203(1), 216-224. doi:10.4049/jimmunol.1900137Cerezuela, R., Meseguer, J., & Esteban, M. Á. (2013). Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 34(3), 843-848. doi:10.1016/j.fsi.2012.12.026Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50(8), 1-9. doi:10.1038/s12276-018-0126-xFredenburgh, L. E., Suárez Velandia, M. M., Ma, J., Olszak, T., Cernadas, M., Englert, J. A., … Perrella, M. A. (2011). Cyclooxygenase-2 Deficiency Leads to Intestinal Barrier Dysfunction and Increased Mortality during Polymicrobial Sepsis. The Journal of Immunology, 187(10), 5255-5267. doi:10.4049/jimmunol.1101186De Francesco, M., Parisi, G., Médale, F., Lupi, P., Kaushik, S. J., & Poli, B. M. (2004). Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture, 236(1-4), 413-429. doi:10.1016/j.aquaculture.2004.01.006Lazzarotto, V., Médale, F., Larroquet, L., & Corraze, G. (2018). Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression. PLOS ONE, 13(1), e0190730. doi:10.1371/journal.pone.0190730Ye, G., Dong, X., Yang, Q., Chi, S., Liu, H., Zhang, H., … Zhang, S. (2020). Dietary replacement of fish meal with peanut meal in juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂): Growth performance, immune response and intestinal microbiota. Aquaculture Reports, 17, 100327. doi:10.1016/j.aqrep.2020.100327Rojo, I., de Ilárduya, Ó. M., Estonba, A., & Pardo, M. Á. (2007). Innate immune gene expression in individual zebrafish after Listonella anguillarum inoculation. Fish & Shellfish Immunology, 23(6), 1285-1293. doi:10.1016/j.fsi.2007.07.002Doménech, A., Fernández-Garayzábal, J. ., Lawson, P., García, J. ., Cutuli, M. ., Blanco, M., … Domínguez, L. (1997). Winter disease outbreak in sea-bream (Sparus aurata) associated with Pseudomonas anguilliseptica infection. Aquaculture, 156(3-4), 317-326. doi:10.1016/s0044-8486(97)00069-0Colorni, A., Paperna, I., & Gordin, H. (1981). Bacterial infections in gilt-head sea bream Sparus aurata cultured at Elat. Aquaculture, 23(1-4), 257-267. doi:10.1016/0044-8486(81)90019-3Balebona, M. C., Andreu, M. J., Bordas, M. A., Zorrilla, I., Moriñigo, M. A., & Borrego, J. J. (1998). Pathogenicity of Vibrio alginolyticus for Cultured Gilt-Head Sea Bream ( Sparus aurata L.). Applied and Environmental Microbiology, 64(11), 4269-4275. doi:10.1128/aem.64.11.4269-4275.1998Liu, X.-F., Cao, Y., Zhang, H.-L., Chen, Y.-J., & Hu, C.-J. (2015). Complete Genome Sequence of Vibrio alginolyticus ATCC 17749 T. Genome Announcements, 3(1). doi:10.1128/genomea.01500-14Peres, H., & Oliva-Teles, A. (2009). The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture, 296(1-2), 81-86. doi:10.1016/j.aquaculture.2009.04.046Bosch, L., Alegría, A., & Farré, R. (2006). Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatography B, 831(1-2), 176-183. doi:10.1016/j.jchromb.2005.12.002Simán, C. M., Sibley, C. P., Jones, C. J. P., Turner, M. A., & Greenwood, S. L. (2001). The functional regeneration of syncytiotrophoblast in cultured explants of term placenta. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 280(4), R1116-R1122. doi:10.1152/ajpregu.2001.280.4.r1116Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters, 26(6), 509-515. doi:10.1023/b:bile.0000019559.84305.4

    Standardization of European eel (Anguilla anguilla) sperm motility evaluation by CASA software

    Full text link
    [EN] The development of powerful computer-assisted sperm analysis software has made kinetic studies of spermatozoa possible. This system has been used and validated for several species, but some technical questions have emerged regarding fish sample evaluations (i.e., frame rate, sperm dilution, chamber model, time of analysis, magnification lens, etc.). In the present study, we have evaluated the effects of different procedural and biological settings with the aim to correctly measure sperm quality parameters of the European eel. The use of different chambers did not affect the sperm motility parameters. However, regarding lens magnification, 10x was the most accurate lens, showing the least variation in the acquired data. Similarly, the frame rate setting resulted in a dramatic effect in some sperm kinetic parameters, primarily in terms of curvilinear velocity; we therefore recommend using the camera's highest available frame rate setting. Finally, the reduction in sperm motility over postactivation times suggests that sperm analysis should be performed within the first 60 seconds after activation of the European eel sperm. In conclusion, some protocol variables of sperm analysis by computer-assisted sperm analysis software can affect the measurement of eel sperm quality parameters, and should be considered before directly comparing results obtained by different laboratories. Moreover, because marine fish species show relatively similar features of sperm kinetic parameters, these results could be considered in the evaluation of the motility of sperm from other fish species. (C) 2013 Elsevier Inc. All rights reserved.This study was funded from the European Community's 7th Framework Programme under the Theme 2 "Food, Agriculture and Fisheries, and Biotechnology," grant agreement 245257 (Pro-Eel), and Generalitat Valenciana (ACOMP/2011/229). D.S.P. and P.C.F.C. have postdoctoral grants from UPV (CE-01-10) and PAC-EMBRAPA, respectively. I.M. and V.G. have predoctoral grants from Generalitat Valenciana and Spanish MICINN, respectively. The authors thank the Proiser R&D, S.L. team, who performed the task of fractioning the original sequences for the experiment described in section 3.2.Gallego Albiach, V.; Carneiro, PCF.; Mazzeo, I.; Vilchez Olivencia, MC.; Peñaranda, D.; Soler, C.; Pérez Igualada, LM.... (2013). Standardization of European eel (Anguilla anguilla) sperm motility evaluation by CASA software. Theriogenology. 79(7):1034-1040. https://doi.org/10.1016/j.theriogenology.2013.01.019S1034104079

    Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.)

    Full text link
    [EN] The digestive tract, particularly the intestine, represents one of the main sites of interactions with the environment, playing the gut mucosa a crucial role in the digestion and absorption of nutrients, and in the immune defence. Previous researches have proven that the fishmeal replacement by plant sources could have an impact on the intestinal status at both digestive and immune level, compromising relevant productive parameters, such as feed efficiency, growth or survival. In order to evaluate the long-term impact of total fishmeal replacement on intestinal mucosa, the gut mucosa proteome was analysed in fish fed with a fishmeal-based diet, against plant protein-based diets with or without alternative marine sources inclusion. Total fishmeal replacement without marine ingredients inclusion, reported a negative impact in growth and biometric parameters, further an altered gut mucosa proteome. However, the inclusion of a low percentage of marine ingredients in plant protein-based diets was able to maintain the growth, biometrics parameters and gut mucosa proteome with similar values to FM group. A total fishmeal replacement induced a big set of underrepresented proteins in relation to several biological processes such as intracellular transport, assembly of cellular macrocomplex, protein localization and protein catabolism, as well as several molecular functions, mainly related with binding to different molecules and the maintenance of the cytoskeleton structure. The set of downregulated proteins also included molecules which have a crucial role in the maintenance of the normal function of the enterocytes, and therefore, of the epithelium, including permeability, immune and inflammatory response regulation and nutritional absorption. Possibly, the amino acid imbalance presented in VM diet, in a long-term feeding, may be the main reason of these alterations, which can be prevented by the inclusion of 15% of alternative marine sources. Significance: Long-term feeding with plant protein based diets may be considered as a stress factor and lead to a negative impact on digestive and immune system mechanisms at the gut, that can become apparent in a reduced fish performance. The need for fishmeal replacement by alternative ingredients such as plant sources to ensure the sustainability of the aquaculture sector has led the research assessing the intestinal status of fish to be of increasing importance. This scientific work provides further knowledge about the proteins and biologic processes altered in the gut in response to plant protein based diets, suggesting the loss of part of gut mucosa functionality. Nevertheless, the inclusion of alternative marine ingredients was able to reverse these negative effects, showing as a feasible option to develop sustainable aquafeeds.The first author was supported by a contract-grant (Contrato Pre doctoral para la Formacion de Profesorado Universitario) from Subprogramas de Formacion y Movilidad within the Programa Estatal de Promocion del Talento y su Empleabilidad of the Ministerio de Educacion, Cultura y Deporte of Spain.Estruch, G.; Martínez-Llorens, S.; Tomas-Vidal, A.; Monge-Ortiz, R.; Jover Cerda, M.; Brown, PB.; Peñaranda, D. (2020). Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). Journal of Proteomics. 216:1-13. https://doi.org/10.1016/j.jprot.2020.103672S113216Martínez-Llorens, S., Moñino, A. V., Tomás Vidal, A., Salvador, V. J. M., Pla Torres, M., & Jover Cerdá, M. (2007). Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquaculture Research, 38(1), 82-90. doi:10.1111/j.1365-2109.2006.01637.xMoutinho, S., Martínez-Llorens, S., Tomás-Vidal, A., Jover-Cerdá, M., Oliva-Teles, A., & Peres, H. (2017). Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream ( Sparus aurata ) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture, 468, 271-277. doi:10.1016/j.aquaculture.2016.10.024Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., … Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12-20. doi:10.1016/j.anifeedsci.2017.02.007Nengas, I., Alexis, M. N., & Davies, S. J. (1999). High inclusion levels of poultry meals and related byproducts in diets for gilthead seabream Sparus aurata L. Aquaculture, 179(1-4), 13-23. doi:10.1016/s0044-8486(99)00148-9Monge-Ortiz, R., Martínez-Llorens, S., Márquez, L., Moyano, F. J., Jover-Cerdá, M., & Tomás-Vidal, A. (2016). Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Archives of Animal Nutrition, 70(2), 155-172. doi:10.1080/1745039x.2016.1141743Sitjà-Bobadilla, A., Peña-Llopis, S., Gómez-Requeni, P., Médale, F., Kaushik, S., & Pérez-Sánchez, J. (2005). Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture, 249(1-4), 387-400. doi:10.1016/j.aquaculture.2005.03.031Santigosa, E., Sánchez, J., Médale, F., Kaushik, S., Pérez-Sánchez, J., & Gallardo, M. A. (2008). Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture, 282(1-4), 68-74. doi:10.1016/j.aquaculture.2008.06.007Kiron, V. (2012). Fish immune system and its nutritional modulation for preventive health care. Animal Feed Science and Technology, 173(1-2), 111-133. doi:10.1016/j.anifeedsci.2011.12.015Minghetti, M., Drieschner, C., Bramaz, N., Schug, H., & Schirmer, K. (2017). A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biology and Toxicology, 33(6), 539-555. doi:10.1007/s10565-017-9385-xGómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish: Table 1. FEMS Immunology & Medical Microbiology, 52(2), 145-154. doi:10.1111/j.1574-695x.2007.00343.xYu, Y., Sitaraman, S., & Gewirtz, A. T. (2004). Intestinal Epithelial Cell Regulation of Mucosal Inflammation. Immunologic Research, 29(1-3), 055-068. doi:10.1385/ir:29:1-3:055Ivanov, A. I., Parkos, C. A., & Nusrat, A. (2010). Cytoskeletal Regulation of Epithelial Barrier Function During Inflammation. The American Journal of Pathology, 177(2), 512-524. doi:10.2353/ajpath.2010.100168Lokman, P., & Symonds, J. (2014). Molecular and biochemical tricks of the research trade: -omics approaches in finfish aquaculture. New Zealand Journal of Marine and Freshwater Research, 48(3), 492-505. doi:10.1080/00288330.2014.928333Forné, I., Abián, J., & Cerdà, J. (2009). Fish proteome analysis: Model organisms and non-sequenced species. PROTEOMICS, 10(4), 858-872. doi:10.1002/pmic.200900609Rodrigues, P. M., Silva, T. S., Dias, J., & Jessen, F. (2012). PROTEOMICS in aquaculture: Applications and trends. Journal of Proteomics, 75(14), 4325-4345. doi:10.1016/j.jprot.2012.03.042Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837-846. doi:10.1038/35015709Karpievitch, Y. V., Polpitiya, A. D., Anderson, G. A., Smith, R. D., & Dabney, A. R. (2010). Liquid chromatography mass spectrometry-based proteomics: Biological and technological aspects. The Annals of Applied Statistics, 4(4). doi:10.1214/10-aoas341Ahmed, F., Kumar, G., Soliman, F. M., Adly, M. A., Soliman, H. A. M., El-Matbouli, M., & Saleh, M. (2019). Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 32, 100625. doi:10.1016/j.cbd.2019.100625Sissener, N. H., Martin, S. A. M., Cash, P., Hevrøy, E. M., Sanden, M., & Hemre, G.-I. (2009). Proteomic Profiling of Liver from Atlantic Salmon (Salmo salar) Fed Genetically Modified Soy Compared to the Near-Isogenic non-GM Line. Marine Biotechnology, 12(3), 273-281. doi:10.1007/s10126-009-9214-1Morais, S., Silva, T., Cordeiro, O., Rodrigues, P., Guy, D. R., Bron, J. E., … Tocher, D. R. (2012). Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar). BMC Genomics, 13(1), 448. doi:10.1186/1471-2164-13-448Martin, S. A. M., Cash, P., Blaney, S., & Houlihan, D. F. (2001). Fish Physiology and Biochemistry, 24(3), 259-270. doi:10.1023/a:1014015530045Martin, S. A. M., Vilhelmsson, O., Médale, F., Watt, P., Kaushik, S., & Houlihan, D. F. (2003). Proteomic sensitivity to dietary manipulations in rainbow trout. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1651(1-2), 17-29. doi:10.1016/s1570-9639(03)00231-0Vilhelmsson, O. T., Martin, S. A. M., Médale, F., Kaushik, S. J., & Houlihan, D. F. (2004). Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition, 92(1), 71-80. doi:10.1079/bjn20041176Kumar, G., Hummel, K., Razzazi-Fazeli, E., & El-Matbouli, M. (2019). Modulation of posterior intestinal mucosal proteome in rainbow trout (Oncorhynchus mykiss) after Yersinia ruckeri infection. Veterinary Research, 50(1). doi:10.1186/s13567-019-0673-8Rajan, B., Lokesh, J., Kiron, V., & Brinchmann, M. F. (2013). Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio anguillarum. BMC Veterinary Research, 9(1). doi:10.1186/1746-6148-9-103Saleh, M., Kumar, G., Abdel-Baki, A.-A., Dkhil, M. A., El-Matbouli, M., & Al-Quraishy, S. (2018). Quantitative shotgun proteomics distinguishes wound-healing biomarker signatures in common carp skin mucus in response to Ichthyophthirius multifiliis. Veterinary Research, 49(1). doi:10.1186/s13567-018-0535-9Saleh, M., Kumar, G., Abdel-Baki, A.-A. S., Dkhil, M. A., El-Matbouli, M., & Al-Quraishy, S. (2019). Quantitative proteomic profiling of immune responses to Ichthyophthirius multifiliis in common carp skin mucus. Fish & Shellfish Immunology, 84, 834-842. doi:10.1016/j.fsi.2018.10.078ENYU, Y.-L., & SHU-CHIEN, A. C. (2011). Proteomics analysis of mitochondrial extract from liver of female zebrafish undergoing starvation and refeeding. Aquaculture Nutrition, 17(2), e413-e423. doi:10.1111/j.1365-2095.2010.00776.xBoonanuntanasarn, S., Nakharuthai, C., Schrama, D., Duangkaew, R., & Rodrigues, P. M. (2019). Effects of dietary lipid sources on hepatic nutritive contents, fatty acid composition and proteome of Nile tilapia (Oreochromis niloticus). Journal of Proteomics, 192, 208-222. doi:10.1016/j.jprot.2018.09.003Ghisaura, S., Anedda, R., Pagnozzi, D., Biosa, G., Spada, S., Bonaglini, E., … Addis, M. F. (2014). Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Science, 12(1). doi:10.1186/s12953-014-0044-3Sabbagh, M., Schiavone, R., Brizzi, G., Sicuro, B., Zilli, L., & Vilella, S. (2019). Poultry by-product meal as an alternative to fish meal in the juvenile gilthead seabream (Sparus aurata) diet. Aquaculture, 511, 734220. doi:10.1016/j.aquaculture.2019.734220Piazzon, M. C., Calduch-Giner, J. A., Fouz, B., Estensoro, I., Simó-Mirabet, P., Puyalto, M., … Pérez-Sánchez, J. (2017). Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 5(1). doi:10.1186/s40168-017-0390-3Wulff, T., Petersen, J., Nørrelykke, M. R., Jessen, F., & Nielsen, H. H. (2012). Proteome Analysis of Pyloric Ceca: A Methodology for Fish Feed Development? Journal of Agricultural and Food Chemistry, 60(34), 8457-8464. doi:10.1021/jf3016943Pérez-Sánchez, J., Estensoro, I., Redondo, M. J., Calduch-Giner, J. A., Kaushik, S., & Sitjà-Bobadilla, A. (2013). Mucins as Diagnostic and Prognostic Biomarkers in a Fish-Parasite Model: Transcriptional and Functional Analysis. PLoS ONE, 8(6), e65457. doi:10.1371/journal.pone.0065457Mirghaed, A. T., Yarahmadi, P., Soltani, M., Paknejad, H., & Hoseini, S. M. (2019). Dietary sodium butyrate (Butirex® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 92, 621-628. doi:10.1016/j.fsi.2019.06.046Estruch, G., Tomás-Vidal, A., El Nokrashy, A. M., Monge-Ortiz, R., Godoy-Olmos, S., Jover Cerdá, M., & Martínez-Llorens, S. (2018). Inclusion of alternative marine by-products in aquafeeds with different levels of plant-based sources for on-growing gilthead sea bream (Sparus aurata, L.): effects on digestibility, amino acid retention, ammonia excretion and enzyme activity. Archives of Animal Nutrition, 72(4), 321-339. doi:10.1080/1745039x.2018.1472408Peres, H., & Oliva-Teles, A. (2009). The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture, 296(1-2), 81-86. doi:10.1016/j.aquaculture.2009.04.046Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M. (2014). Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Molecular & Cellular Proteomics, 13(9), 2513-2526. doi:10.1074/mcp.m113.031591Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44-57. doi:10.1038/nprot.2008.211Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1-13. doi:10.1093/nar/gkn923Kader, M. A., Bulbul, M., Koshio, S., Ishikawa, M., Yokoyama, S., Nguyen, B. T., & Komilus, C. F. (2012). Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture, 350-353, 109-116. doi:10.1016/j.aquaculture.2012.04.009HERBINGER, C. M., & FRIARS, G. W. (1991). Correlation between condition factor and total lipid content in Atlantic salmon, Salmo salar L., parr. Aquaculture Research, 22(4), 527-529. doi:10.1111/j.1365-2109.1991.tb00766.xJohansson, L., Kiessling, A., Kiessling, K.-H., & Berglund, L. (2000). Effects of altered ration levels on sensory characteristics, lipid content and fatty acid composition of rainbow trout (Oncorhynchus mykiss). Food Quality and Preference, 11(3), 247-254. doi:10.1016/s0950-3293(99)00073-7De Francesco, M., Parisi, G., Médale, F., Lupi, P., Kaushik, S. J., & Poli, B. M. (2004). Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture, 236(1-4), 413-429. doi:10.1016/j.aquaculture.2004.01.006Berg, O. K., Thronæs, E., & Bremset, G. (1998). Energetics and survival of virgin and repeat spawning brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences, 55(1), 47-53. doi:10.1139/f97-208Saera-Vila, A., Calduch-Giner, J. A., Gómez-Requeni, P., Médale, F., Kaushik, S., & Pérez-Sánchez, J. (2005). Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 142(2), 224-232. doi:10.1016/j.cbpb.2005.07.009Panserat, S., & Kaushik, S. J. (2010). Regulation of gene expression by nutritional factors in fish. Aquaculture Research, 41(5), 751-762. doi:10.1111/j.1365-2109.2009.02173.xKhurana, S., & George, S. P. (2008). Regulation of cell structure and function by actin-binding proteins: Villin’s perspective. FEBS Letters, 582(14), 2128-2139. doi:10.1016/j.febslet.2008.02.040Bedford, L., Paine, S., Sheppard, P. W., Mayer, R. J., & Roelofs, J. (2010). Assembly, structure, and function of the 26S proteasome. Trends in Cell Biology, 20(7), 391-401. doi:10.1016/j.tcb.2010.03.007Wu, Y.-X., Yang, J.-H., & Saitsu, H. (2016). Bortezomib-resistance is associated with increased levels of proteasome subunits and apoptosis-avoidance. Oncotarget, 7(47), 77622-77634. doi:10.18632/oncotarget.12731Fararjeh, Chen, Ho, Cheng, Liu, Chang, … Tu. (2019). Proteasome 26S Subunit, non-ATPase 3 (PSMD3) Regulates Breast Cancer by Stabilizing HER2 from Degradation. Cancers, 11(4), 527. doi:10.3390/cancers11040527Pastorelli, L., De Salvo, C., Mercado, J. R., Vecchi, M., & Pizarro, T. T. (2013). Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00280Babbin, B. A., Laukoetter, M. G., Nava, P., Koch, S., Lee, W. Y., Capaldo, C. T., … Nusrat, A. (2008). Annexin A1 Regulates Intestinal Mucosal Injury, Inflammation, and Repair. The Journal of Immunology, 181(7), 5035-5044. doi:10.4049/jimmunol.181.7.5035Leoni, G., Neumann, P.-A., Sumagin, R., Denning, T. L., & Nusrat, A. (2015). Wound repair: role of immune–epithelial interactions. Mucosal Immunology, 8(5), 959-968. doi:10.1038/mi.2015.63Bakke-McKellep, A. M., Penn, M. H., Salas, P. M., Refstie, S., Sperstad, S., Landsverk, T., … Krogdahl, Å. (2007). Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 97(4), 699-713. doi:10.1017/s0007114507381397Wolf, H. K., & Dittrich, K. L. (1992). Detection of proliferating cell nuclear antigen in diagnostic histopathology. Journal of Histochemistry & Cytochemistry, 40(9), 1269-1273. doi:10.1177/40.9.1354677Ducker, G. S., & Rabinowitz, J. D. (2017). One-Carbon Metabolism in Health and Disease. Cell Metabolism, 25(1), 27-42. doi:10.1016/j.cmet.2016.08.009Cunningham, K. E., & Turner, J. R. (2012). Myosin light chain kinase: pulling the strings of epithelial tight junction function. Annals of the New York Academy of Sciences, 1258(1), 34-42. doi:10.1111/j.1749-6632.2012.06526.xFanning, A. S., & Anderson, J. M. (1999). PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. Journal of Clinical Investigation, 103(6), 767-772. doi:10.1172/jci6509Werner, T., & Haller, D. (2007). Intestinal epithelial cell signalling and chronic inflammation: From the proteome to specific molecular mechanisms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 622(1-2), 42-57. doi:10.1016/j.mrfmmm.2007.05.010Lee, S. H. (2015). Intestinal Permeability Regulation by Tight Junction: Implication on Inflammatory Bowel Diseases. Intestinal Research, 13(1), 11. doi:10.5217/ir.2015.13.1.11Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 9(11), 799-809. doi:10.1038/nri2653Ulluwishewa, D., Anderson, R. C., McNabb, W. C., Moughan, P. J., Wells, J. M., & Roy, N. C. (2011). Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components. The Journal of Nutrition, 141(5), 769-776. doi:10.3945/jn.110.135657Knudsen, D., Jutfelt, F., Sundh, H., Sundell, K., Koppe, W., & Frøkiær, H. (2008). Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 100(1), 120-129. doi:10.1017/s0007114507886338Hu, H., Kortner, T. M., Gajardo, K., Chikwati, E., Tinsley, J., & Krogdahl, Å. (2016). Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L.) Is Affected by Dietary Protein Source. PLOS ONE, 11(12), e0167515. doi:10.1371/journal.pone.0167515Strober, W., Fuss, I. J., & Blumberg, R. S. (2002). The Immunology of Mucosal Models of Inflammation. Annual Review of Immunology, 20(1), 495-549. doi:10.1146/annurev.immunol.20.100301.064816Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell, 118(2), 229-241. doi:10.1016/j.cell.2004.07.002Neal, M. D., Leaphart, C., Levy, R., Prince, J., Billiar, T. R., Watkins, S., … Hackam, D. J. (2006). Enterocyte TLR4 Mediates Phagocytosis and Translocation of Bacteria Across the Intestinal Barrier. The Journal of Immunology, 176(5), 3070-3079. doi:10.4049/jimmunol.176.5.3070Fink, M. P., & Delude, R. L. (2005). Epithelial Barrier Dysfunction: A Unifying Theme to Explain the Pathogenesis of Multiple Organ Dysfunction at the Cellular Level. Critical Care Clinics, 21(2), 177-196. doi:10.1016/j.ccc.2005.01.005Estruch, G., Collado, M. C., Peñaranda, D. S., Tomás Vidal, A., Jover Cerdá, M., Pérez Martínez, G., & Martinez-Llorens, S. (2015). Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequ

    Role of calcium on the initiation of sperm motility in the European eel

    Full text link
    [EN] Sperm from European eel males treated with hCG(rec), was washed in a calcium free extender, and sperm motility was activated both in the presence (seawater, SW) and in the absence of calcium (NaCI + EDTA), and treated with calcium inhibitors or modulators. The sperm motility parameters were evaluated by a computer-assisted sperm analysis (CASA) system, and changes in the [Ca2+](i) fluorescence (and in [Na+](i) in some cases) were evaluated by flow cytometry. After sperm motility was activated in a medium containing Ca2+ (seawater, SW) the intracellular fluorescence emitted by Ca2+ increased 4-6-fold compared to the levels in quiescent sperm. However, while sperm activation in a Ca-free media (NaCI + EDTA) resulted in a percentage of motility similar to seawater, the [Ca2+](i) levels did not increase at all. This result strongly suggests that increasing [Ca2+](i) is not a pre-requisite for the induction of sperm motility in European eel sperm. Several sperm velocities (VCL, VSL, VAP) decreased when sperm was activated in the Ca-free activator, thus supporting the theory that Ca2+ has a modulatory effect on sperm motility. The results indicate that a calcium/sodium exchanger (NCX) which is inhibited by bepridil and a calcium calmodulin kinase (inhibited by W-7), are involved in the sperm motility of the European eel. Our results indicate that the increase in [Ca2+](i) concentrations during sperm activation is due to an influx from the external medium, but, unlike in most other species, it does not appear to be necessary for the activation of motility in European eel sperm. (c) 2015 Elsevier Inc All rights reserved.Funded from the SPERMOT project (Spanish Ministry of Science and Innovation, MICINN; AGL2010-16009). M.C. Vilchez has a predoctoral grant from UPV PAID Program (2011-S2-02-6521), Marina Morini has a predoctoral grant from Generalitat Valenciana (Programa Grisolia, GRISOLIA/2012/006), Victor Gallego has a postdoctoral contract from UPV (PAID-10-14), and David S. Penaranda was supported by MICINN (PTA2011-4948-I) and UPV (PTA2011-4948-I). Grants to attend meetings were received from COST Office (Food and Agriculture COST Action FA1205: AQUAGAMETE).Pérez Igualada, LM.; Vilchez Olivencia, MC.; Gallego Albiach, V.; Morini, M.; Peñaranda, D.; Asturiano Nemesio, JF. (2016). Role of calcium on the initiation of sperm motility in the European eel. Comparative Biochemistry and Physiology - Part A: Molecular and Integrative Physiology. 191:98-106. https://doi.org/10.1016/j.cbpa.2015.10.009S9810619

    Intracellular changes in Ca2+, K+ and pH after sperm motility activation in the European eel (Anguilla anguilla): Preliminary results

    Full text link
    [EN] Although it is widely accepted that osmolality and ion fluxes are the main factors triggering sperm motility in fish, a complex universal mechanism for sperm motility activation does not exist in fish, and studies of marine fish species are even more scarce. Therefore, the main goal of this study was to estimate the intracellular variations in the main ions involved in sperm activation for the first time in European eel, in order to provide additional new data about this little-known process. It was observed that levels of intracellular Ca2+ and K+ sperm ions increased significantly 30 s after the hyperosmotic shock compared to baseline levels, and remained at this level until 120 s post-activation. In contrast, the intracellular pH remained constant during the first 30 s, and decreased gradually at 60 and 120 s post-activation. Our data agree with the current main theory for explaining motility activation in marine fish, in which internal fluctuations of Ca2+ and K+ seem to participate in sperm activation. In addition, fluorescent images showed that both Ca2+ and K+ were concentrated in the apical area of the sperm head, which corresponds to the location of the eel sperm mitochondria, suggesting this organelle plays an important role in sperm motility activation. (C) 2013 Elsevier B.V. All rights reserved.Funded from the European Community's 7th Framework Programme under the Theme 2 "Food, Agriculture and Fisheries, and Biotechnology", grant agreement no 245257 (Pro-Eel) and the Spanish Ministry of Science and Innovation (MICINN; AGL2010-16009). Victor Gallego has a predoctoral grant (MICINN; BES-2009-020310) and has been granted a fellowship (EEBB-I-12-05858) of the Spanish Personnel Research Training Programme to carry out this study in the Universidad de Leon (Leon, Spain). Ilaria Mazzeo had a predoctoral grant from GVA. David S. Penaranda has a contract co-financed by MICINN and UPV (PTA2011-4948-I). F. Martinez-Pastor was supported by the Ramon y Cajal program (RYC-2008-02560, MICINN).Gallego Albiach, V.; Martínez Pastor, F.; Mazzeo, I.; Peñaranda, D.; Herraez, P.; Asturiano Nemesio, JF.; Pérez Igualada, LM. (2014). Intracellular changes in Ca2+, K+ and pH after sperm motility activation in the European eel (Anguilla anguilla): Preliminary results. Aquaculture. 418:155-158. https://doi.org/10.1016/j.aquaculture.2013.10.022S15515841
    corecore