226 research outputs found

    Empleo de materiales secundarios como materia prima de nuevos tipos de cementos

    Get PDF
    The present paper is a comparative study of some characteristics of new belite cements obtained from two kind of wastes, which were used as secondary raw materials: fly ash (FA), of low CaO content, from coal combustion, and ash from incineration of municipal solid waste (MSWIA). Cements were synthesised in a range of temperature between 700°C and 900°C from MSWIA and FA, which were previously activated by hydrothermal treatment at 200°C The evolution of cemented phases with the heating temperature was followed by X-ray diffraction (XRD). The results were compared with those obtained from heating the starting FA and MSWIA without the previous hydrothermal treatment. The degree of hydration was quantitatively evaluated by the combined water content, determined from thermogravimetric analyses, during a period of 28 days or 200 days from mixing depending of hydration kinetics of each cement.Este trabajo es un estudio comparativo de algunas de las características de nuevos cementos belíticos, obtenidos a partir de dos tipos de residuos, como materia prima secundaria: cenizas volantes (CV) de bajo contenido en cal, procedentes de la combustión del carbón y cenizas procedentes de la incineración de residuos sólidos urbanos (CIRSU). Los cementos fueron sintetizados en un rango de temperaturas comprendido entre 700°C y 900°C después de un tratamiento hidrotermal de la CV y CIRSU a 200°C La evolución de las fases cementicias, con la temperatura de calentamiento, fue estudiada por difracción de rayos X (DRX). Los resultados fueron comparados con aquellos obtenidos, directamente, por calentamiento de los residuos, sin un tratamiento hidrotermal previo de los mismos. El grado de hidratación fue cuantitativamente evaluado, por medio del análisis termogravimétrico, a partir del agua combinada de los cementos hidratados durante un período de 28 días o 200 días, dependiendo de la cinética de hidratación de cada cemento

    J Regularization Improves Imbalanced Multiclass Segmentation

    Get PDF
    We propose a new loss formulation to further advance the multiclass segmentation of cluttered cells under weakly supervised conditions. When adding a Youden's J statistic regularization term to the cross entropy loss we improve the separation of touching and immediate cells, obtaining sharp segmentation boundaries with high adequacy. This regularization intrinsically supports class imbalance thus eliminating the necessity of explicitly using weights to balance training. Simulations demonstrate this capability and show how the regularization leads to correct results by helping advancing the optimization when cross entropy stagnates. We build upon our previous work on multiclass segmentation by adding yet another training class representing gaps between adjacent cells. This addition helps the classifier identify narrow gaps as background and no longer as touching regions. We present results of our methods for 2D and 3D images, from bright field images to confocal stacks containing different types of cells, and we show that they accurately segment individual cells after training with a limited number of images, some of which are poorly annotated

    Activity as the Main Explanation of Light Variations of <i>o</i> And — Towards a Rotational Modulation Model

    Get PDF
    Observations carried out for 5 years on o And show that 65 to 85% of its light variations can be described by a double wave: A sin (2πt/P1 + ϕ1) + B sin (2πt/P2 + ϕ2) + C with P1 ≈ 1.6 d = 2P2. When determined independently, P1 and P2 are always found in a 2:1 ratio (within 1%), while they can vary together by as much as 4%. The peak to peak amplitudes of this double-wave fit lay between 40 and 140 mmag (and can even be reduced to less than 10 mmag - our 1987 observations). The rest of the light variations do not show any permanent period or behavior, although a ∼ 2.3 d. (i.e. ≈ 3P1/2) period is frequently detected. Sometimes a marginal ∼ 6 d. period or time constant has been detected.In spite of the quality of our photometric data, the precision on the periods and amplitudes obtained over a few nights is never increased by longer observations: our phase diagrams show significant irregular displacements around the average double-wave analytical solution if we include longer data strings (Fig. 1). This phenomenon was already apparent in our 1992 study (Sareyan et al., 1998): the star shows real irregular behaviour superimposed onto its double-wave "mean" light curve; these changes may show up as a progressive, or sometimes abrupt, modification of the shape of the double-wave light curve (Fig. 1)

    J Regularization Improves Imbalanced Multiclass Segmentation

    Get PDF
    We propose a new loss formulation to further advance the multiclass segmentation of cluttered cells under weakly supervised conditions. When adding a Youden's J statistic regularization term to the cross entropy loss we improve the separation of touching and immediate cells, obtaining sharp segmentation boundaries with high adequacy. This regularization intrinsically supports class imbalance thus eliminating the necessity of explicitly using weights to balance training. Simulations demonstrate this capability and show how the regularization leads to correct results by helping advancing the optimization when cross entropy stagnates. We build upon our previous work on multiclass segmentation by adding yet another training class representing gaps between adjacent cells. This addition helps the classifier identify narrow gaps as background and no longer as touching regions. We present results of our methods for 2D and 3D images, from bright field images to confocal stacks containing different types of cells, and we show that they accurately segment individual cells after training with a limited number of images, some of which are poorly annotated

    Discrepancies between the [O III] and [S III] temperatures in H II regions

    Get PDF
    Context. Analysis of published [O iii] and [S iii] temperatures measurements of emission line objects consisting of Hii galaxies, giant extragalactic Hii regions, Galactic Hii regions, and Hii regions from the Magellanic Clouds reveal that the [O iii] temperatures are higher than the corresponding values from [S iii] in most objects with gas metallicities in excess of 0.2 solar. For the coolest nebulae (the highest metallicities), the [O iii] temperature excess can reach ∼3000 K. Aims. We look for an explanation for these temperature differences and explore the parameter space of models with the aim of reproducing the observed trend of T O iii > T S iii in Hii regions with temperatures below 14 000 K. Methods. Using standard photoionization models, we varied the ionization parameter, the hardness of the ionizing continuum, and the gas metallicities in order to characterize how models behave with respect to the observations. We introduced temperature inhomogeneities and varied their mean squared amplitude t 2. We explored the possibility of inhomogeneities in abundances by combining two models of widely different metallicity. We calculated models that consider the possibility of a non-Maxwell-Boltzmann energy distribution (a κ-distribution) for the electron energies. We also considered shock heating within the photoionized nebula. Results. Simple photoionization calculations yield nearly equal [O iii] and [S iii] temperatures in the domain of interest. Hence these models fail to reproduce the [O iii] temperature excess. Models that consider temperature inhomogeneities, as measured by the mean squared amplitude t 2, also fail in the regime where T O iii < 14 000 K. Three options remain that can reproduce the observed excess in T O iii temperatures: (1) large metallicity inhomogeneities in the nebula; a (2) κ-distribution for the electron energies; and (3) shock waves that propagate in the photoionized plasma at velocities ∼60 km s -1. Conclusions. The observed nebular temperatures are not reproduced by varying the input parameters in the pure photoionization case nor by assuming local temperature inhomogeneities. We find that (1) metallicity inhomogeneities of the nebular gas; (2) shock waves of velocities 60 km s -1 propagating in a photoionized plasma; and (3) an electron energy distribution given by a κ-distribution are successful in reproducing the observed excess in the [O iii] temperatures. However, shock models require proper 3D hydrodynamical simulations to become a fully developed alternative while models with metallicity inhomogeneities appear to fail in metal-poor nebulae, since they result in T rec O++ T O iii T rec O++ ≳ TO iii.Facultad de Ciencias Astronómicas y Geofísica

    Faint recombination lines in Galactic PNe with [WC] nucleus

    Full text link
    We present spatially resolved high-resolution spectrophotometric data for the planetary nebulae PB8, NGC2867, and PB6. We have analyzed two knots in NGC2867 and PB6 and one in PB8. The three nebulae are ionized by [WC] type nuclei: early [WO] for PB6 and NGC2867 and [WC 5-6] in the case of PB8. Our aim is to study the behavior of the abundance discrepancy problem (ADF) in this type of PNe. We measured a large number of optical recombination (ORL) and collisionally excited lines (CEL), from different ionization stages (many more than in any previous work), thus, we were able to derive physical conditions from many different diagnostic procedures. We determined ionic abundances from the available collisionally excited lines and recombination lines. Based on both sets of ionic abundances, we derived total chemical abundances in the nebulae using suitable ionization correction factors. From CELs, we have found abundances typical of Galactic disk planetary nebulae. Moderate ADF(O++) were found for PB8 (2.57) and NGC2867 (1.63). For NGC2867, abundances from ORLs are higher but still consistent with Galactic disk planetary nebulae. On the contrary, PB8 presents a very high O/H ratio from ORLs. A high C/O was obtained from ORLs for NGC2867; this ratio is similar to C/O obtained from CELs and with the chemical composition of the wind of the central star, indicating that there was no further C-enrichment in the star, relative to O, after the nebular material ejection. On the contrary, we found C/O<1 in PB8. Interestingly, we obtain (C/O)ORLs/(C/O)CELs < 1 in PB8 and NGC2867; this added to the similarity between the heliocentric velocities measured in [OIII] and OII lines for our three objects, argue against the presence of H-deficient metal-rich knots coming from a late thermal pulse event.Comment: 25 pages, 13 Tables, 4 Figures Accepted for publication in A&A. First page is blank for obscure latex reason

    Aerosol optical properties over Europe: an evaluation of the AQMEII Phase 3 simulations against satellite observations

    Get PDF
    Abstract. The main uncertainties regarding the estimation of changes in the Earth's energy budget are related to the role of atmospheric aerosols. These changes are caused by aerosol–radiation (ARIs) and aerosol–cloud interactions (ACIs), which heavily depend on aerosol properties. Since the 1980s, many international modeling initiatives have studied atmospheric aerosols and their climate effects. Phase 3 of the Air Quality Modelling Evaluation International Initiative (AQMEII) focuses on evaluating and intercomparing regional and linked global/regional modeling systems by collaborating with the Task Force on the Hemispheric Transport of Air Pollution Phase 2 (HTAP2) initiative. Within this framework, the main aim of this work is the assessment of the representation of aerosol optical depth (AOD) and the Ångström exponent (AE) in AQMEII Phase 3 simulations over Europe. The evaluation was made using remote-sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua platforms, and the instruments belonging to the ground-based Aerosol Robotic Network (AERONET) and the Maritime Aerosol Network (MAN). Overall, the skills of AQMEII simulations when representing AOD (mean absolute errors from 0.05 to 0.30) produced lower errors than for the AE (mean absolute errors from 0.30 to 1). Regardless of the models or the emissions used, models were skillful at representing the low and mean AOD values observed (below 0.5). However, high values (around 1.0) were overpredicted for biomass burning episodes, due to an underestimation in the common fires' emissions, and were overestimated for coarse particles – principally desert dust – related to the boundary conditions. Despite this behavior, the spatial and temporal variability of AOD was better represented by all the models than AE variability, which was strongly underestimated in all the simulations. Noticeably, the impact of the model selection when representing aerosol optical properties is higher than the use of different emission inventories. On the other hand, the influence of ARIs and ACIs has a little visible impact compared to the impact of the model used

    The Gaia spectrophotometric standard stars survey - IV. Results of the absolute photometry campaign

    Get PDF
    We present Johnson-Kron-Cousins BVRI photometry of 228 candidate spectrophotometric standard stars for the external (absolute) flux calibration of Gaia data. The data were gathered as part of a 10-yr observing campaign with the goal of building the external grid of flux standards for Gaia and we obtained absolute photometry, relative photometry for constancy monitoring, and spectrophotometry. Preliminary releases of the flux tables were used to calibrate the first two Gaia releases. This paper focuses on the imaging frames observed in good sky conditions (about 9100). The photometry will be used to validate the ground-based flux tables of the Gaia spectrophotometric standard stars and to correct the spectra obtained in non-perfectly photometric observing conditions for small zero-point variations. The absolute photometry presented here is tied to the Landolt standard stars system to ≃1 per cent or better, depending on the photometric band. Extensive comparisons with various literature sources show an overall ≃1 per cent agreement, which appears to be the current limit in the accuracy of flux calibrations across various samples and techniques in the literature. The Gaia photometric precision is presently of the order of 0.1 per cent or better, thus various ideas for the improvement of photometric calibration accuracy are discussed.This work was supported by the MINECO (Spanish Ministry of Economy and Competitiveness) through grant RTI2018-095076-B-C21 (MINECO/FEDER- Fondo Europeo de Desarrollo Regional, UE). APV acknowledges FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the postdoctoral fellowship No. 2017/15893-1 and the DGAPA (Dirección General de Asuntos del Personal Académico) PAPIIT grant IG100319
    • …
    corecore