56 research outputs found
Probing Electron Correlation via Attosecond XUV Pulses in the Two-Photon Double Ionization of Helium
Recent experimental developments of high-intensity, short-pulse XUV light
sources are enhancing our ability to study electron-electron correlations. We
perform time-dependent calculations to investigate the so-called "sequential"
regime (photon energy above 54.4 eV) in the two-photon double ionization of
helium. We show that attosecond pulses allow to induce and probe angular and
energy correlations of the emitted electrons. The final momentum distribution
reveals regions dominated by the Wannier ridge break-up scenario and by
post-collision interaction.Comment: 4 pages, 5 figure
Universal features in sequential and nonsequential two-photon double ionization of helium
We analyze two-photon double ionization of helium in both the nonsequential
and sequential regime. We show that the energy spacing between the two emitted
electrons provides the key parameter that controls both the energy and the
angular distribution and reveals the universal features present in both the
nonsequential and sequential regime. This universality, i.e., independence of
photon energy, is a manifestation of the continuity across the threshold for
sequential double ionization. For all photon energies, the energy distribution
can be described by a universal shape function that contains only the spectral
and temporal information entering second-order time-dependent perturbation
theory. Angular correlations and distributions are found to be more sensitive
to the photon energy. In particular, shake-up interferences have a large effect
on the angular distribution. Energy spectra, angular distributions
parameterized by the anisotropy parameters, and total cross sections presented
in this paper are obtained by fully correlated time-dependent ab initio
calculations.Comment: 12 pages, 8 figure
Probing scattering phase shifts by attosecond streaking
Attosecond streaking is one of the most fundamental processes in attosecond
science allowing for a mapping of temporal (i.e. phase) information on the
energy domain. We show that on the single-particle level attosecond streaking
time shifts contain spectral phase information associated with the
Eisenbud-Wigner-Smith (EWS) time delay, provided the influence of the streaking
infrared field is properly accounted for. While the streaking phase shifts for
short-ranged potentials agree with the associated EWS delays, Coulomb
potentials require special care. We show that the interaction between the
outgoing electron and the combined Coulomb and IR laser fields lead to a
streaking phase shift that can be described classically
Wave packet retrieval by multi-photon quantum beat spectroscopy in helium
We show that we can probe the components of an attosecond bound electron wave packet by mapping the quantum beat signal produced by a synchronized delayed few-cycle infrared pulse into the continuum. In addition, spectrally overlapping peaks that result from one-, two- or three-photon processes from more or less deeply bound states can in principle be interferometrically resolved with high resolution
Nonsequential two-photon double ionization of helium
We present accurate time-dependent ab initio calculations on fully
differential and total integrated (generalized) cross sections for the
nonsequential two-photon double ionization of helium at photon energies from 40
to 54 eV. Our computational method is based on the solution of the
time-dependent Schroedinger equation and subsequent projection of the wave
function onto Coulomb waves. We compare our results with other recent
calculations and discuss the emerging similarities and differences. We
investigate the role of electronic correlation in the representation of the
two-electron continuum states, which are used to extract the ionization yields
from the fully correlated final wave function. In addition, we study the
influence of the pulse length and shape on the cross sections in time-dependent
calculations and address convergence issues.Comment: 14 pages, 10 figures; final version (acknowledgements and reference
added, typos fixed
Time-resolved photoemission by attosecond streaking: extraction of time information
Attosecond streaking of atomic photoemission holds the promise to provide
unprecedented information on the release time of the photoelectron. We show
that attosecond streaking phase shifts indeed contain timing (or spectral
phase) information associated with the Eisenbud-Wigner-Smith time delay matrix
of quantum scattering. However, this is only accessible if the influence of the
streaking infrared (IR) field on the emission process is properly accounted
for. The IR probe field can strongly modify the observed streaking phase shift.
We show that the part of the phase shift ("time shift") due to the interaction
between the outgoing electron and the combined Coulomb and IR laser fields can
be described classically. By contrast, the strong initial-state dependence of
the streaking phase shift is only revealed through the solution of the
time-dependent Schr\"odinger equation in its full dimensionality. We find a
time delay between the hydrogenic 2s and 2p initial states in He+ exceeding
20as for a wide range of IR intensities and XUV energies
Electron correlation in two-photon double ionization of helium from attosecond to FEL pulses
We investigate the role of electron correlation in the two-photon double
ionization of helium for ultrashort XUV pulses with durations ranging from a
hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio
calculations for pulses with mean frequencies in the so-called "sequential"
regime (photon energy above 54.4 eV). Electron correlation induced by the time
correlation between emission events manifests itself in the angular
distribution of the ejected electrons, which strongly depends on the energy
sharing between them. We show that for ultrashort pulses two-photon double
ionization probabilities scale non-uniformly with pulse duration depending on
the energy sharing between the electrons. Most interestingly we find evidence
for an interference between direct ("nonsequential") and indirect
("sequential") double photo-ionization with intermediate shake-up states, the
strength of which is controlled by the pulse duration. This observation may
provide a route toward measuring the pulse duration of FEL pulses.Comment: 9 pages, 6 figure
Interpreting Attoclock Measurements of Tunnelling Times
Resolving in time the dynamics of light absorption by atoms and molecules,
and the electronic rearrangement this induces, is among the most challenging
goals of attosecond spectroscopy. The attoclock is an elegant approach to this
problem, which encodes ionization times in the strong-field regime. However,
the accurate reconstruction of these times from experimental data presents a
formidable theoretical challenge. Here, we solve this problem by combining
analytical theory with ab-initio numerical simulations. We apply our theory to
numerical attoclock experiments on the hydrogen atom to extract ionization time
delays and analyse their nature. Strong field ionization is often viewed as
optical tunnelling through the barrier created by the field and the core
potential. We show that, in the hydrogen atom, optical tunnelling is
instantaneous. By calibrating the attoclock using the hydrogen atom, our method
opens the way to identify possible delays associated with multielectron
dynamics during strong-field ionization.Comment: 33 pages, 10 figures, 3 appendixe
Isolated terawatt attosecond hard X-ray pulse generated from single current spike
Isolated terawatt (TW) attosecond (as) hard X-ray pulse is greatly desired for four-dimensional investigations of natural phenomena with picometer spatial and attosecond temporal resolutions. Since the demand for such sources is continuously increasing, the possibility of generating such pulse by a single current spike without the use of optical or electron delay units in an undulator line is addressed. The conditions of a current spike (width and height) and a modulation laser pulse (wavelength and power) is also discussed. We demonstrate that an isolated TW-level as a hard X-ray can be produced by a properly chosen single current spike in an electron bunch with simulation results. By using realistic specifications of an electron bunch of the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL), we show that an isolated, >1.0 TW and similar to 36 as X-ray pulse at 12.4 keV can be generated in an optimized-tapered undulator line. This result opens a new vista for current XFEL operation: the attosecond XFEL
Probing time-ordering in two-photon double ionization of helium on the attosecond time scale
We show that time ordering underlying time-dependent quantum dynamics is a physical observable accessible by attosecond streaking. We demonstrate the extraction of time ordering for the prototypical case of time-resolved two-photon double ionization (TPDI) of helium by an attosecond XUV pulse. The Eisenbud-Wigner-Smith time delay for the emission of a two-electron wavepacket and the time interval between subsequent emission events can be unambiguously determined by attosecond streaking. The delay between the two emission events sensitively depends on the energy, pulse duration, and angular distribution of the emitted electron pair. Our fully-dimensional ab-initio quantum mechanical simulations provide benchmark data for experimentally accessible observables
- …