20 research outputs found

    Phase transition at 350 K in the Ti3_3C2_2Tx_x MXene: possible sliding (moir\'e) ferroelectricity

    Full text link
    A phase transition is found in Ti3_3C2_2Tx_x MXene at 350 K, by measuring the complex Young's modulus of self-standing thick films. A step-like softening and increase of the mechanical losses is found below 350 K, indicative of a phase transition, where the square of the order parameter is coupled to strain. It is argued that it should be a ferroelectric transition, most likely of the sliding (moir\'e) type, due to charge transfer between facing flakes sliding with respect to each other. If the transition will be confirmed to be ferroelectric, Ti3_3C2_2Tx_x will be added to the class of metallic ferroelectrics and open new perspectives of applications, in addition to the numerous already studied

    Mixed Cation Halide Perovskite under Environmental and Physical Stress

    Get PDF
    Despite the ideal performance demonstrated by mixed perovskite materials when used as active layers in photovoltaic devices, the factor which still hampers their use in real life remains the poor stability of their physico-chemical and functional properties when submitted to prolonged permanence in atmosphere, exposure to light and/or to moderately high temperature. We used high resolution photoelectron spectroscopy to compare the chemical state of triple cation, double halide Cs [Formula: see text] (FA [Formula: see text] MA [Formula: see text]) [Formula: see text] Pb(I [Formula: see text] Br [Formula: see text]) [Formula: see text] perovskite thin films being freshly deposited or kept for one month in the dark or in the light in environmental conditions. Important deviations from the nominal composition were found in the samples aged in the dark, which, however, did not show evident signs of oxidation and basically preserved their own electronic structures. Ageing in the light determined a dramatic material deterioration with heavily perturbed chemical composition also due to reactions of the perovskite components with surface contaminants, promoted by the exposure to visible radiation. We also investigated the implications that 2D MXene flakes, recently identified as effective perovskite additive to improve solar cell efficiency, might have on the labile resilience of the material to external agents. Our results exclude any deleterious MXene influence on the perovskite stability and, actually, might evidence a mild stabilizing effect for the fresh samples, which, if doped, exhibited a lower deviation from the expected stoichiometry with respect to the undoped sample. The evolution of the undoped perovskites under thermal stress was studied by heating the samples in UHV while monitoring in real time, simultaneously, the behaviour of four representative material elements. Moreover, we could reveal the occurrence of fast changes induced in the fresh material by the photon beam as well as the enhanced decomposition triggered by the concurrent X-ray irradiation and thermal heating

    Decoration of laser induced graphene with MXene and manganese oxide for fabrication of a hybrid supercapacitor

    Get PDF
    During the last years, Internet of Things has become a prominent topic of technical, social, and economic importance. One of the main consequences is the high demand for energy and power density from small energy storage devices. In this field the laser induced graphene (LIG) has become a promising material to produce flexible micro-supercapacitors. The issue with this material is that the performances are strongly restrained by its limited surface area and the relatively low conductivity. In this work we improve the performance of a LIG supercapacitor by decorating its surface through electrophoresis: one electrode will be decorated with metal nitrides and metal carbides (MXenes), the other with manganese oxide. These two materials have appreciable conductivity and pseudocapacitance. Electrochemical measurements have been carried out on the two electrodes separately. After a charge balancing, the device has been sealed in pouch and tested

    MXene-containing composite electrodes for hydrogen evolution: material design aspects and approaches for electrode fabrication

    Get PDF
    This work explores the possibilities for the processing of Ni- and Ti3C2Tx (T = OH, O) MXene-containing composite electrodes, by co-pressing and plastic deformation or by etching of the electrodes prepared directly by self-propagation high-temperature synthesis (SHS). Various material design approaches were also explored. In order to tune the Ti3C2 interlayer distance in Ti3C2Al MAX phase, an introduction of additional Al to form Ti3C2Alz materials with z > 1 was attempted. Self-propagation high-temperature synthesis of powder mixtures with extra Ni and Al content (e.g. Ni:Ti:Al:C = 1:2:3:1) resulted in SHS products containing Ti3C2Alz z > 1 material and Ni–Al alloys. Further etching of these products in 10M NaOH allowed the direct formation of electrodes with active surface containing Ti3C2Tx (T = OH, O) MXene- and Raney nickel-containing composites. The electrochemical studies were focused on hydrogen evolution and showed the potential for boosting the electrochemical reaction in Ni and MXene-containing composite electrodes, especially at high current densities. The guidelines for the processing of such electrodes under fluorine-free conditions are proposed and discussed.publishe

    2D Molybdenum Carbide MXenes for Enhanced Selective Detection of Humidity in Air

    Get PDF
    2D transition metal carbides and nitrides (MXenes) open up novel opportunities in gas sensing with high sensitivity at room temperature. Herein, 2D Mo2CTx flakes with high aspect ratio are successfully synthesized. The chemiresistive effect in a sub-mu m MXene multilayer for different organic vapors and humidity at 10(1)-10(4) ppm in dry air is studied. Reasonably, the low-noise resistance signal allows the detection of H2O down to 10 ppm. Moreover, humidity suppresses the response of Mo2CTx to organic analytes due to the blocking of adsorption active sites. By measuring the impedance of MXene layers as a function of ac frequency in the 10(-2)-10(6) Hz range, it is shown that operation principle of the sensor is dominated by resistance change rather than capacitance variations. The sensor transfer function allows to conclude that the Mo2CTx chemiresistance is mainly originating from electron transport through interflake potential barriers with heights up to 0.2 eV. Density functional theory calculations, elucidating the Mo2C surface interaction with organic analytes and H2O, explain the experimental data as an energy shift of the density of states under the analyte's adsorption which induces increasing electrical resistance

    Structure determination and magnetic properties of the Mn-doped MAX phase Cr2GaC

    No full text
    Introducing magnetic elements into the structure of layered ternary transition metal-based carbides that belong to the family of MAX phases has led to various intriguing phenomena, such as magnetic ordering close to or even above room temperature and structural changes accompanying magnetic transitions. However, synthesizing manganese-or even iron-containing-MAX phases has proven to be extremely challenging as a result of the intrinsic structural instability at higher electron counts of the later transition metals as well as the favored formation of thermodynamically stable competing phases. Owing to the available kinetic control over the reaction product coupled with (atomically) precise growth techniques, the thin film community has taken the lead in the synthesis of MAX phases that exhibit magnetic ordering. Producing bulk samples of sufficient quality to study the complex magnetic properties of Mn-containing MAX phase compounds poses a major obstacle, particularly if conventional high-temperature methods are used that promote the formation of stable side phases. Using a milder wet chemical-based approach, we have synthesized Mn-containing solid solutions of MAX phase Cr2GaC with Mn amounts ranging from 2 to 20 at in the M-layers. The resulting (Cr1-xMnx)2GaC (x = 0.02-0.2) particles are structurally characterized using X-ray and neutron powder diffractometry, as well as scanning transmission electron microscopy to enable detailed magnetometry studies. We demonstrate that low amounts of Mn on the Cr site do not induce magnetic ordering, and a sample with a Mn content of x = 0.20 is also predominantly paramagnetic. Taking all side phases into account, locally ordered parts of the MAX phase could explain the magnetic order we observe at elevated temperatures

    Developing polymeric/MXenes composite inks towards printable electronics

    No full text
    International audience3D printing is an emerging technology for many applications, including electronics. On the other hand, to gather the applications’ requirements with the possibility to produce complex 3-dimensional structures, the development of novel 3D printable materials is necessary. In this context, herein it is reported the synthesis of 3D printable photocurable resins embedding Ti3C2Tz-MXenes, a class of 2D layered materials with outstanding electrical and electronic properties. Stable inks suitable for Digital Light Processing 3D printing technology have been successfully synthesized and employed to fabricate complex 3D composite structures with high printing fidelity. To enhance the electrical conductivity of the material, annealing treatments have been performed, followed by a complete characterization of the so obtained materials. The results show that objects with improved electrical conductivity have been successfully obtained, opening new perspectives in towards the development of complex 3 dimensional electronic

    Phase transition at 350 K in the Ti 3 C 2 T x MXene: possible sliding (moiré) ferroelectricity

    No full text
    A phase transition is found in Ti 3 C 2 T x MXene at 350 K, by measuring the complex Young's modulus of self-standing thick films. A step-like softening and increase of the mechanical losses is found below 350 K, indicative of a phase transition, where the square of the order parameter is coupled to strain. It is argued that it should be a ferroelectric transition, most likely of the sliding (moiré) type, due to charge transfer between facing flakes sliding with respect to each other. If the transition will be confirmed to be ferroelectric, Ti 3 C 2 T x will be added to the class of metallic ferroelectrics and open new perspectives of applications, in addition to the numerous already studied

    Ion Implantation Enhanced Exfoliation Efficiency of V2AlC Single Crystals: Implications for Large V2CTz Nanosheet Production

    No full text
    International audienceMXenes are two-dimensional transition-metal carbides and nitrides with an attractive combination of physicochemical properties, gaining notable potential in many applications. Currently, MXene synthesis is mainly performed from powder precursors whose purity and grain size define the quality and flake size of 2D sheets, typically not exceeding 2–3 μm. In this work, we successfully synthesize macroscopic nanolayered V2CTz MXenes with lateral dimensions larger than 25 μm from a V2AlC single crystal by exploiting a new strategy based on ion implantation. Ne2+ ion implantation of the single-crystal precursor is applied to introduce defects in the crystal structure of V2AlC, which facilitates chemical etching and drastically reduces the etching time down to 8 h (∼10 times lower as compared to conventional synthesis from powder precursors). The quality and morphology of exfoliated macroscopic MXene multilayers have been comprehensively studied by performing detailed analyses based on different kinds of microscopies and spectroscopies. The obtained macroscopic flakes are ideal objects to study the intrinsic physical properties of V2CTz MXenes and explore their potential application, in particular, as membranes
    corecore