17 research outputs found

    RAS-MAPK in ALK targeted therapy resistance

    No full text
    The clinical success of ALK targeted therapy is limited by resistance. To identify rational co-targeting strategies to enhance clinical outcomes, we explored the molecular basis of ALK oncogene dependence in ALK gene rearrangement positive (ALK+) lung adenocarcinoma. We discovered that the RAS-RAF-MEK-ERK pathway is the critical downstream pathway necessary for ALK+ tumor cell survival. Upfront co-targeting of ALK plus MEK enhanced response and forestalled resistance in preclinical ALK+ tumor models, providing rationale for a new approach the treatment of ALK+ patients

    The anticancer gene ORCTL3 targets stearoyl-CoA desaturase-1 for tumour-specific apoptosis

    No full text
    ORCTL3 is a member of a group of genes, the so-called anticancer genes, that cause tumour-specific cell death. We show that this activity is triggered in isogenic renal cells upon their transformation independently of the cells’ proliferation status. For its cell death effect ORCTL3 targets the enzyme stearoyl-CoA desaturase-1 (SCD1) in fatty acid metabolism. This is caused by transmembrane domains 3 and 4, which are more efficacious in vitro than a low molecular weight drug against SCD1, and critically depend on their expression level. SCD1 is found upregulated upon renal cell transformation indicating that its activity, while not impacting proliferation, represents a critical bottleneck for tumourigenesis. An adenovirus expressing ORCTL3 leads to growth inhibition of renal tumours in vivo and to substantial destruction of patients’ kidney tumour cells ex vivo. Our results indicate fatty acid metabolism as a target for tumour-specific apoptosis in renal tumours and suggest ORCTL3 as a means to accomplish this

    Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction

    No full text
    The formation of reactive oxygen species (ROS) and the change of the intracellular pH (pHi) are common phenomena during apoptosis. How they are interconnected, however, is poorly understood. Here we show that numerous anticancer drugs and cytokines such as Fas ligand and tumour necrosis factor α provoke intracellular acidification and cause the formation of mitochondrial ROS. In parallel, we found that the succinate:ubiquinone oxidoreductase (SQR) activity of the mitochondrial respiratory complex II is specifically impaired without affecting the second enzymatic activity of this complex as a succinate dehydrogenase (SDH). Only in this configuration is complex II an apoptosis mediator and generates superoxides for cell death. This is achieved by the pHi decline that leads to the specific dissociation of the SDHA/SDHB subunits, which encompass the SDH activity, from the membrane-bound components of complex II that are required for the SQR activity
    corecore