22 research outputs found

    Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants

    Get PDF
    Probiotics have been explored to stimulate gut health in weaned pigs, when they started to consume solid diet where mycotoxins could be present. The aim of this study was to evaluate the effect of Lactobacillus rhamnosus RC007 on the intestinal toxicity of deoxynivalenol (DON) in an ex vivo model. Jejunal explants, obtained from 5-week-old crossbred castrated male piglets, were kept as control, exposed for 3 h to 10 μM DON, incubated for 4 h with 109 CFU/mL L. rhamnosus, or pre-incubated 1 h with 109L. rhamnosus and exposed to DON. Histological lesions were observed, para- and transcellular intestinal permeability was measured in Ussing chambers. The expression levels of mRNA encoding six inflammatory cytokines (CCL20, IL-10, IL-1β, TNFα, IL-8 and IL-22) were determined by RT-PCR. The expressions of the phosphorylated MAP kinases p42/p44 and p38 were assessed by immunoblotting. Exposure to DON induced histological changes, significantly increased the expression of CCL20, IL-1β, TNFα, IL-8, IL-22 and IL-10, increased the intestinal paracellular permeability and activated MAP kinases. Incubation with L. rhamnosus alone did not have any significant effect. By contrast, the pre-incubation with L. rhamnosus reduced all the effects of DON: the histological alterations, the pro-inflammatory response, the paracellular permeability and the phosphorylation of MAP kinases. Of note, L. rhamnosus did not adsorb DON and only slightly degrade the toxin. In conclusion, L. rhamnosus RC007 is a promising probiotic which, included as feed additive, can decrease the intestinal toxicity of DON.Fil: García, Gisela Romina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Payros, Delphine. Instituto National de Recherches Agronomiques. Centre de Recherches de Toulouse; Francia. Université Paul Sabatier; FranciaFil: Pinton, Philippe. Instituto National de Recherches Agronomiques. Centre de Recherches de Toulouse; Francia. Université Paul Sabatier; FranciaFil: Dogi, Cecilia Ana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Laffitte, Joëlle. Instituto National de Recherches Agronomiques. Centre de Recherches de Toulouse; Francia. Université Paul Sabatier; FranciaFil: Neves, Manon. Instituto National de Recherches Agronomiques. Centre de Recherches de Toulouse; Francia. Université Paul Sabatier; FranciaFil: Gonzalez Pereyra, Maria Laura. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Cavaglieri, Lilia Reneé. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Oswald, Isabelle P.. Instituto National de Recherches Agronomiques. Centre de Recherches de Toulouse; Francia. Université Paul Sabatier; Franci

    Natural mutations in the sensor kinase of the PhoPR two-component regulatory system modulate virulence of ancestor-like tuberculosis bacilli

    Get PDF
    The molecular factors and genetic adaptations that contributed to the emergence of Mycobacterium tuberculosis (MTB) from an environmental Mycobacterium canettii-like ancestor, remain poorly investigated. In MTB, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Here, we describe that several mutations, present in phoR of M. canettii relative to MTB, impact the expression of the PhoP regulon and the pathogenicity of the strains. First, we establish a molecular model of PhoR and show that some substitutions found in PhoR of M. canettii are likely to impact the structure and activity of this protein. Second, we show that STB-K, the most attenuated available M. canettii strain, displays lower expression of PhoP-induced genes than MTB. Third, we demonstrate that genetic swapping of the phoPR allele from STB-K with the ortholog from MTB H37Rv enhances expression of PhoP-controlled functions and the capacities of the recombinant strain to colonize human macrophages, the MTB target cells, as well as to cause disease in several mouse infection models. Fourth, we extended these observations to other M. canettii strains and confirm that PhoP-controlled functions are expressed at lower levels in most M. canettii strains than in M. tuberculosis. Our findings suggest that distinct PhoR variants have been selected during the evolution of tuberculosis bacilli, contributing to higher pathogenicity and persistence of MTB in the mammalian host

    A novel toxic effect of foodborne trichothecenes: The exacerbation of genotoxicity

    No full text
    International audienceTrichothecenes (TCT) are very common mycotoxins. While the effects of DON, the most prevalent TCT, have been extensively studied, less is known about the effect of other trichothecenes. DON has ribotoxic, pro-inflammatory, and cytotoxic potential and induces multiple toxic effects in humans and animals. Although DON is not genotoxic by itself, it has recently been shown that this toxin exacerbates the genotoxicity induced by model or bacterial genotoxins. Here, we show that five TCT, namely T-2 toxin (T-2), diacetoxyscirpenol (DAS), nivalenol (NIV), fusarenon-X (FX), and the newly discovered NX toxin, also exacerbate the DNA damage inflicted by various genotoxins. The exacerbation was dose dependent and observed with phleomycin, a model genotoxin, captan, a pesticide with genotoxic potential, and colibactin, a bacterial genotoxin produced by the intestinal microbiota. For this newly described effect, the trichothecenes ranked in the following order: T-2>DAS > FX > NIV ≥ DON ≥ NX. The genotoxic exacerbating effect of TCT correlated with their ribotoxic potential, as measured by the inhibition of protein synthesis. In conclusion, our data demonstrate that TCT, which are not genotoxic by themselves, exacerbate DNA damage induced by various genotoxins. Therefore, foodborne TCT could enhance the carcinogenic potential of genotoxins present in the diet or produced by intestinal bacteria

    Toxicology of deoxynivalenol and its acetylated and modified forms

    No full text
    Mycotoxins are the most frequently occurring natural contaminants in human and animal diet. Among them, deoxynivalenol (DON), produced by Fusarium, is one of the most prevalent and thus represents an important health risk. Recent detection methods revealed new mycotoxins and new molecules derivated from the "native" mycotoxins. The main derivates of DON are the acetylated forms produced by the fungi (3- and 15-acetyl-DON), the biologically "modified" forms produced by the plant (deoxynivalenol-3-beta-d-glucopyranoside), or after bacteria transformation (de-epoxy DON, 3-epi-DON and 3-keto-DON) as well as the chemically "modified" forms (norDON A-C and DON-sulfonates). High proportions of acetylated and modified forms of DON co-occur with DON, increasing the exposure and the health risk. DON and its acetylated and modified forms are rapidly absorbed following ingestion. At the molecular level, DON binds to the ribosome, induces a ribotoxic stress leading to the activation of MAP kinases, cellular cell-cycle arrest and apoptosis. The toxic effects of DON include emesis and anorexia, alteration of intestinal and immune functions, reduced absorption of the nutrients as well as increased susceptibility to infection and chronic diseases. In contrast to DON, very little information exists concerning the acetylated and modified forms; some can be converted back to DON, their ability to bind to the ribosome and to induce cellular effects varies according to the toxin. Except for the acetylated forms, their toxicity and impact on human and animal health are poorly documented

    Impact of mycotoxins on the intestine: are mucus and microbiota new targets?

    No full text
    There is an increasing awareness of the deleterious effects attributed to mycotoxins during their fate within the gut, particularly for deoxynivalenol (DON), zearalenone (ZEN), ochratoxin A (OTA), fumonisin B1 (FB1), aflatoxin B1 (AFB1), and patulin (PAT). Evidence indicates that disruption of the epithelial barrier is well established. However, intestinal barrier function on its luminal side involves two other partners, mucus and microbiota, which have rarely been considered in the context of mycotoxin exposure. The current review aimed at providing a summary of DON, ZEN, OTA, FB1, AFB1, and PAT effects on intestinal barrier function, with special focus on mucus and microbiota. DON, ZEN, OTA, FB1, AFB1, and PAT are known to markedly affect epithelial cell integrity and functions. Regarding mucus, DON is the most documentated mycotoxin. In vivo, toxicological impact of DON generally has only been assessed through goblet cell number. Evaluation of the mycotoxins/mucus interplay considering other indicators such as composition, thickness, and penetrability of mucus, mucin O-glycosylation thus warrants further attention. With respect to microbiota, few short-term studies to date have been reported indicating deleterious effects. However, long-term exposure to mycotoxins may also produce significant changes in microbiota composition and metabolic activity, which requires further experimentation. In conclusion, mucus and microbiota are key targets for dietary mycotoxins although assessment of induced effects is preliminary. A significant research effort is now underway to determine the adverse consequences of mycotoxins on mucus and microbiota considered as individual but also as tightly connected gut players

    Deoxynivalenol in the liver and lymphoid organs of rats: effects of dose and duration on immunohistological changes

    No full text
    Deoxynivalenol (DON) is one of the most prevalent type B trichothecenes present in food inducing adverse effects, including intestinal changes and immunosuppression. The aim of the present study was to investigate the effects of DON on rats exposed for 7, 14 and 28 days to mycotoxin-contaminated diets, using histological and immunohistochemical analyses on liver and lymphoid organs. Fifty rats received a control diet, or a diet contaminated with 1.75 mg/kg of DON for 30 days, or a diet contaminated with 11.4 mg/kg of DON for 7, 14 or 30 days. Ingestion of contaminated feed induced a significant increase in the lesional score in the liver, spleen, and lymph nodes. The main histological findings observed in the liver were cytoplasmic vacuolisation and hepatocelular megalocytosis. A significant increase in hepatocyte proliferation was observed in rats that received 1.75 mg/kg of DON. Lymphoid depletion was the main histological alteration observed in lymphoid organs, resulting in a significant increase in the lesional score in all groups that received the contaminated diets. The histological changes and lymphocyte apoptosis were more severe in lymph nodes of rats fed 11.4 mg/kg of DON during 30 days. The results of the morphological and immunohistochemical analyses suggest that the ingestion of DON can induce functional hepatic impairment and immunosuppression in a dose-and time-dependent manner

    The food contaminant, deoxynivalenol, modulates the Thelper-Treg balance and increases inflammatory bowel diseases

    No full text
    International audienceThe incidence of inflammatory bowel diseases (IBD) is increasing inboth Western and developing countries. IBD are multifactorial disorders involving complex interactions between genetic, immune, and environmental factors such as exposure to food contaminants. Deoxynivalenol (DON) is the most prevalent mycotoxin that contaminates staple food and induces intestinal breakdown and inflammatory response. To delineate the role of DON oral exposure in IBD, we used a Dextran sulfate sodium (DSS) colitis model in rats fed with a DONcontaminated diet or a control diet for four weeks. Colitis was induced in the third week by increasing concentrations of DSS in the drinking water (0, 2, 3 or 5%). DON exacerbated body weight loss and accelerated the appearance of symptoms in animals treated with DSS. DON increased morphological damage, pro-inflammatory markers (myeloperoxidase, CXCL1 and IL1β) and immune cell responses. In lamina propria of rat with colitis, DON increased adaptive and innate immune responses after anti-CD3/28 or LPS stimulation, respectively. In spleen, DON increased IFNγ secretion and reduced Treg populations. Interestingly, De-epoxy-DON (DOM-1) a detoxified form of DON did not have any consequences on colitis. These results suggest that DON is a risk factor in the onset of IBD

    Oral tolerance failure upon neonatal gut colonization with Escherichia coli producing the genotoxin colibactin

    No full text
    International audienceThe intestinal barrier controls the balance between tolerance and immunity to luminal antigens. When this finely tuned equilibrium is deregulated, inflammatory disorders can occur. There is a concomitant increase, in urban populations of developed countries, of immune-mediated diseases along with a shift in Escherichia coli population from the declining phylogenetic group A to the newly dominant group B2, including commensal strains producing a genotoxin called colibactin that massively colonized the gut of neonates. Here, we showed that mother-to-offspring early gut colonization by colibactin-producing E. coli impairs intestinal permeability and enhances the transepithelial passage of luminal antigen, leading to an increased immune activation. Functionally, this was accompanied by a dramatic increase in local and systemic immune responses against a fed antigen, decreased regulatory T cell population, tolerogenic dendritic cells, and enhanced mucosal delayed-type hypersensitivity response. Conversely, the abolition of colibactin expression by mutagenesis abrogates the alteration of oral tolerance induced by neonatal colonization by E. coli. In conclusion, the vertical colonization by E. coli producing the genotoxin colibactin enhances intestinal translocation and subsequently alters oral tolerance. Thus, early colonization by E. coli from the newly dominant phylogenetic group B2, which produces colibactin, may represent a risk factor for the development of immune-mediated diseases
    corecore