16,236 research outputs found

    Magnetism and Magnetic Isomers in Free Chromium Clusters

    Get PDF
    We have used the Stern-Gerlach deflection technique to study magnetism in chromium clusters of 20-133 atoms. Between 60 K and 100 K, we observe that these clusters have large magnetic moments and respond superparamagnetically to applied magnetic fields. Using superparamagnetic theory, we have determined the moment per atom for each cluster size and find that it often far exceeds the moment per atom present anywhere in the bulk antiferromagnetic lattice. Remarkably, our cluster beam contains two magnetically distinguishable forms of each cluster size with >= 34 atoms. We attribute this observation to structural isomers

    Agent-Based Team Aiding in a Time Critical Task

    No full text
    In this paper we evaluate the effectiveness of agent-based aiding in support of a time-critical team-planning task for teams of both humans and heterogeneous software agents. The team task consists of human subjects playing the role of military commanders and cooperatively planning to move their respective units to a common rendezvous point, given time and resource constraints. The objective of the experiment was to compare the effectiveness of agent-based aiding for individual and team tasks as opposed to the baseline condition of manual route planning. There were two experimental conditions: the Aided condition, where a Route Planning Agent (RPA) finds a least cost plan between the start and rendezvous points for a given composition of force units; and the Baseline condition, where the commanders determine initial routes manually, and receive basic feedback about the route. We demonstrate that the Aided condition provides significantly better assistance for individual route planning and team-based re-planning

    The 1980 US/Canada wheat and barley exploratory experiment. Volume 2: Addenda

    Get PDF
    Three study areas supporting the U.S./Canada Wheat and Barley Exploratory Experiment are discussed including an evaluation of the experiment shakedown test analyst labeling results, an evaluation of the crop proportion estimate procedure 1A component, and the evaluation of spring wheat and barley crop calendar models for the 1979 crop year

    YF-12 Lockalloy ventral fin program, volume 1

    Get PDF
    Results are presented of the YF-12 Lockalloy Ventral Fin Program which was carried out by Lockheed Aircraft Corporation - Advanced Development Projects for the joint NASA/USAF YF-12 Project. The primary purpose of the program was to redesign and fabricate the ventral fin of the YF-12 research airplane (to reduce flutter) using Lockalloy, and alloy of beryllium and aluminum, as a major structural material. A secondary purpose, was to make a material characterization study (thermodynamic properties, corrosion; fatigue tests, mechanical properties) of Lockalloy to validate the design of the ventral fin and expand the existing data base on this material. All significant information pertinent to the design and fabrication of the ventral fin is covered. Emphasis throughout is given to Lockalloy fabrication and machining techniques and attendant personnel safety precautions. Costs are also examined. Photographs of tested alloy specimens are shown along with the test equipment used

    The prevalence of medical reasons for non-participation in the Scottish breast and bowel cancer screening programmes

    Get PDF
    Objective: Increasing uptake of cancer screening is a priority for health systems internationally, however, some patients may not attend because they are undergoing active treatment for the cancer of interest or have other medical reasons that mean participation would be inappropriate. This study aims to quantify the proportion of non-participants who have a medical reason for not attending cancer screening.<p></p> Methods: Medical reasons for not participating in breast and bowel screening were defined a priori on the basis of a literature review and expert opinion. The notes of 700 patients at two GP practices in Scotland were reviewed, to ascertain the prevalence of medical reasons amongst non-participants. Simple proportions and confidence intervals were calculated.<p></p> Results: 17.4% of breast and 2.3% of bowel screening non-participants had a medical reason to not participate. The two most common reasons were previous breast cancer follow up (8.86%) and recent mammogram (6.57%).<p></p> Conclusion: These patients may not benefit from screening while also being distressed by receiving an invitation. This issue also makes accurate monitoring and target-setting for improving uptake difficult. Further work is needed to estimate robustly the extent to which medical reasons account for screening non-participation in a larger population.<p></p&gt

    Nuclear Corrections to Hyperfine Structure in Light Hydrogenic Atoms

    Full text link
    Hyperfine intervals in light hydrogenic atoms and ions are among the most accurately measured quantities in physics. The theory of QED corrections has recently advanced to the point that uncalculated terms for hydrogenic atoms and ions are probably smaller than 0.1 parts per million (ppm), and the experiments are even more accurate. The difference of the experiments and QED theory is interpreted as the effect on the hyperfine interaction of the (finite) nuclear charge and magnetization distributions, and this difference varies from tens to hundreds of ppm. We have calculated the dominant component of the 1s hyperfine interval for deuterium, tritium and singly ionized helium, using modern second-generation potentials to compute the nuclear component of the hyperfine splitting for the deuteron and the trinucleon systems. The calculated nuclear corrections are within 3% of the experimental values for deuterium and tritium, but are about 20% discrepant for singly ionized helium. The nuclear corrections for the trinucleon systems can be qualitatively understood by invoking SU(4) symmetry.Comment: 26 pages, 1 figure, latex - submitted to Physical Review

    The Extended Power Law as Intrinsic Signature For a Black Hole

    Get PDF
    We analyze the exact general relativistic exact integro-differential equation of radiative transfer describing the interaction of low energy photons with a Maxwellian distribution of hot electrons in gravitational field of a Schwarzschild black hole. We prove that due to Comptonization an initial arbitrary spectrum of low energy photons unavoidably results in spectra characterized by an extended power-law feature. We examine the spectral index by using both analytical and numerical methods for a variety of physical parameters as such the plasma temperature and the mass accretion rate. The presence of the event horizon as well as the behaviour of the null geodesics in its vicinity largely determine the dependence of the spectral index on the flow parameters. We come to the conclusion that the bulk motion of a converging flow is more efficient in upscattering photons than thermal Comptonization provided that the electron temperature in the flow is of order of a few keV or less. In this case, the spectrum observed at infinity consists of a soft component produced by those input photons that escape after a few scatterings without any significant energy change and of hard component (described by a power law) produced by the photons that underwent significant upscattering. The luminosity of the power-law component is relatively small compared to that of the soft component. For accretion into black hole the spectral energy index of the power-law is always higher than one for plasma temperature of order of a few keV. This result suggests that the bulk motion Comptonization might be responsible for the power-law spectra seen in the black-hole X-ray sources.Comment: 31 pages, 3 figures; Astrophysical Journal accepte

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure
    • …
    corecore