361 research outputs found

    Optical fiber fabrication using novel gas-phase deposition technique

    No full text
    We report a highly versatile chemical-in-crucible preform fabrication technique suitable for gas-phase deposition of doped optical fibers. Aluminosilicate and ytterbium-doped phosphosilicate fibers are presented demonstrating the technique and its potential for realizing complex fiber designs that are suitable for the next generation of high-power fiber devices. The results show aluminum-doped fiber with numerical aperture of 0.28 and ytterbium-doped fiber with a measured slope efficiency of 84% with respect to pump launch power

    Modified conjugated gradient method for diagonalising large matrices

    Full text link
    We present an iterative method to diagonalise large matrices. The basic idea is the same as the conjugated gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroduce errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trail vectors, play a similar role of the conjugated gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitably for first principle calculations.Comment: 6 Pages, 2EPS figures. (To appear in Phys. Rev. E

    Fabrication and development of polarisation maintaining fibres using gas phase etching

    No full text
    Polarisation-maintaining fibres are of considerable interest in the field of optical fibre sensors because of their ability to transmit either of the two orthogonal li early polarised modes over long distances - an extinction ratio of 20dB in 5km of PANDA fibre has been reported (Hosaka et a1 (I)). The fibres owe their polarisation holding performance to the high levels of birefringence designed into the structure. Although the form birefringence of an elliptical core can be used (Dyott et a1 (2)), the fibres are usually made birefringent by doping the silica on either side of the core with materials having different expansion coefficients. The resulting fibre has a birefringence proportional to the anisotropic stress across the core, whose magnitude depends upon the expansion coefficient mismatch and fibre geometry. In this paper, the optimum structure for a polarisation-maintaining fibre is first designed and then a process to make it is described together with typical performance figures. Finally, two techniques are described to enhance the already high levels of birefringence obtainable, and experimental results are given which show how short lengths of fibre can be used as a high extinction polariser, while long lengths of fibre can be used for the transmission of linearly polarised light aligned to one of the axes only - the other linearly polarised mode being suppressed

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.

    A Self-Consistent First-Principles Technique Having Linear Scaling

    Full text link
    An algorithm for first-principles electronic structure calculations having a computational cost which scales linearly with the system size is presented. Our method exploits the real-space localization of the density matrix, and in this respect it is related to the technique of Li, Nunes and Vanderbilt. The density matrix is expressed in terms of localized support functions, and a matrix of variational parameters, L, having a finite spatial range. The total energy is minimized with respect to both the support functions and the elements of the L matrix. The method is variational, and becomes exact as the ranges of the support functions and the L matrix are increased. We have tested the method on crystalline silicon systems containing up to 216 atoms, and we discuss some of these results.Comment: 12 pages, REVTeX, 2 figure

    Electron localization : band-by-band decomposition, and application to oxides

    Full text link
    Using a plane wave pseudopotential approach to density functional theory we investigate the electron localization length in various oxides. For this purpose, we first set up a theory of the band-by-band decomposition of this quantity, more complex than the decomposition of the spontaneous polarization (a related concept), because of the interband coupling. We show its interpretation in terms of Wannier functions and clarify the effect of the pseudopotential approximation. We treat the case of different oxides: BaO, α\alpha-PbO, BaTiO3_3 and PbTiO3_3. We also investigate the variation of the localization tensor during the ferroelectric phase transitions of BaTiO3_3 as well as its relationship with the Born effective charges

    Ab-initio density-functional lattice-dynamics studies of ice

    Get PDF
    We present the results of first-principles computational studies of the dynamical properties of hexagonal ice using both the ab-initio pseudopotential method and the full-potential augmented plane-wave method. Properties obtained using both the generalized gradient approximation (GGA) and the meta-GGA in density-functional theory are compared. The lattice-dynamical properties of the structures are obtained using a finite-difference evaluation of the dynamical matrix and force-constant matrix from atomic forces. Phonon dispersion is evaluated by the direct determination of the force-constant matrix in supercells derived from the primitive molecule unit cells with the assumption that force constants are zero beyond the second molecular nearest neighbors. The k-dependent phonon frequencies are then obtained from the force-constant matrix and dispersion relations, and the Brillouin-zone integrated density of states is evaluated. The importance of phonon dispersion in the various regions of the phonon spectra is then assessed and compared to existing neutron-scattering data. Frozen-phonon calculations are used to compare phonon frequencies evaluated in both the GGA and meta-GGA

    Towards a Linear-Scaling DFT Technique: The Density Matrix Approach

    Full text link
    A recently proposed linear-scaling scheme for density-functional pseudopotential calculations is described in detail. The method is based on a formulation of density functional theory in which the ground state energy is determined by minimization with respect to the density matrix, subject to the condition that the eigenvalues of the latter lie in the range [0,1]. Linear-scaling behavior is achieved by requiring that the density matrix should vanish when the separation of its arguments exceeds a chosen cutoff. The limitation on the eigenvalue range is imposed by the method of Li, Nunes and Vanderbilt. The scheme is implemented by calculating all terms in the energy on a uniform real-space grid, and minimization is performed using the conjugate-gradient method. Tests on a 512-atom Si system show that the total energy converges rapidly as the range of the density matrix is increased. A discussion of the relation between the present method and other linear-scaling methods is given, and some problems that still require solution are indicated.Comment: REVTeX file, 27 pages with 4 uuencoded postscript figure

    The age of Stonehenge

    Get PDF
    Stonehenge is the icon of British prehistory, and continues to inspire ingenious investigations and interpretations. A current campaign of research, being waged by probably the strongest archaeological team ever assembled, is focused not just on the monument, but on its landscape, its hinterland and the monuments within it. The campaign is still in progress, but the story so far is well worth reporting. Revisiting records of 100 years ago the authors demonstrate that the ambiguous dating of the trilithons, the grand centrepiece of Stonehenge, was based on samples taken from the wrong context, and can now be settled at 2600-2400 cal BC. This means that the trilithons are contemporary with Durrington Walls, near neighbour and Britain's largest henge monument. These two monuments, different but complementary, now predate the earliest Beaker burials in Britain – including the famous Amesbury Archer and Boscombe Bowmen, but may already have been receiving Beaker pottery. All this contributes to a new vision of massive monumental development in a period of high European intellectual mobility…

    Ab initio calculations for bromine adlayers on the Ag(100) and Au(100) surfaces: the c(2x2) structure

    Full text link
    Ab initio total-energy density-functional methods with supercell models have been employed to calculate the c(2x2) structure of the Br-adsorbed Ag(100) and Au(100) surfaces. The atomic geometries of the surfaces and the preferred bonding sites of the bromine have been determined. The bonding character of bromine with the substrates has also been studied by analyzing the electronic density of states and the charge transfer. The calculations show that while the four-fold hollow-site configuration is more stable than the two-fold bridge-site topology on the Ag(100) surface, bromine prefers the bridge site on the Au(100) surface. The one-fold on-top configuration is the least stable configuration on both surfaces. It is also observed that the second layer of the Ag substrate undergoes a small buckling as a consequence of the adsorption of Br. Our results provide a theoretical explanation for the experimental observations that the adsorption of bromine on the Ag(100) and Au(100) surfaces results in different bonding configurations.Comment: 10 pages, 4 figure, 5 tables, Phys. Rev. B, in pres
    corecore