12 research outputs found

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced

    SemCards: A New Representation for Realizing the Semantic Web

    No full text

    IANA task force on nutrition and cognitive decline with aging

    No full text
    Cognitive impairment can be influenced by a number of factors. The potential effect of nutrition has become a topic of increasing scientific and public interest. In particular, there are arguments that nutrients (food and/or supplements) such as vitamins, trace minerals, lipids, can affect the risk of cognitive decline and dementia, especially in frail elderly people at risk of deficiencies. Our objective in this paper is to review data relating diet to risk of cognitive decline and dementia, especially Alzheimer's disease (AD). We chose to focus our statements on homocysteine-related vitamins (B-vitamins), antioxidant nutrients (vitamins E and C, carotenoids, flavonoids, enzymatic cofactors) and dietary lipids. Results of epidemiological studies may sometimes appeared conflicting; however, certain associations are frequently found. High intake of saturated and trans-unsaturated (hydrogenated) fats were positively associated with increased risk of AD, whereas intake of polyunsaturated and monounsaturated fats were protective against cognitive decline in the elderly in prospective studies. Fish consumption has been associated with lower risk of AD in longitudinal cohort studies. Moreover, epidemiologic data suggest a protective role of the B-vitamins, especially vitamins B9 and B12, on cognitive decline and dementia. Finally, the results on antioxidant nutrients may suggest the importance of having a balanced combination of several antioxidant nutrients to exert a significant effect on the prevention of cognitive decline and dementia, while taking into account the potential adverse effects of these nutrients. There is no lack of attractive hypotheses to support research on the relationships between nutrition and cognitive decline. It is important to stress the need to develop further prospective studies of sufficiently long duration, including subjects whose diet is monitored at a sufficiently early stage or at least before disease or cognitive decline exist. Meta analyses should be developed, and on the basis of their results the most appropriate interventional studies can be planned. These studies must control for the greatest number of known confounding factors and take into account the impact of the standard social determinants of food habits, such as the regional cultures, social status, and educational level

    Effects of Fire on Landscape Heterogeneity in Yellowstone National Park, Wyoming

    No full text
    A map of burn severity resulting from the 1988 fires that occurred in Yellowstone National Park (YNP) was derived from Landsat Thematic Mapper (TM) imagery and used to assess the isolation of burned areas, the heterogeneity that resulted from fires burning under moderate and severe burning conditions, and the relationship between heterogeneity and fire size. About 80% of the park is covered with coniferous forests dominated by lodgepole pine (Pinus contorta var. latifolia). The majority of severely burned areas were within close proximity (50 to 200 m) to unburned or lightly burned areas, suggesting that few burned sites are very far from potential sources of propagules for plant re-establishment. Fires that occurred under moderate burning conditions early during the 1988 fire season resulted in a lower proportion of crown fire than fires that occurred under severe burning conditions later in the season. Increased dominance and contagion of burn severity classes and decrease in the edge:area ratio for later fires indicated a slightly more aggregated burn pattern compared to early fires. The proportion of burned area in different burn severity classes varied as a function of daily fire size. When daily area burned was relatively low, the proportion of burned area in each burn severity class varied widely. When daily burned area exceeded 1250 ha, the burned area contained about 50% crown fire, 30% severe surface burn, and 20% light surface burn. Understanding the effect of fire on landscape heterogeneity is important because the kinds, amounts, and spatial distribution of burned and unburned areas may influence the reestablishment of plant species on burned sites
    corecore