1,485 research outputs found

    Method and apparatus for receiving and tracking phase modulated signals

    Get PDF
    An apparatus and technique are described for receiving and tracking analog or digital phase modulated signals from 0 deg to 360 deg phase shift. In order to track a signal with many phases, a detector discerns the phase modulation of the incoming signal and a phase shifter generates a negative phase shift opposite in angle to the detected phase angle. This produces a converted series sideband component barrier signal. The residual carrier signal and the converted series sideband component carrier are added together to produce a tracking carrier signal. The tracking carrier signal is multiplied with the output from a voltage controlled oscillator in the tracking loop to obtain an error signal which drives the voltage controlled oscillator and tracks the incoming signal frequency. The technique is less susceptible to carrier interference which may degrade tracking and tracking may be performed at lower signal to noise ratios and for lower input signal power levels

    Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory

    Get PDF
    We uniquely determine the infrared asymptotics of Green functions in Landau gauge Yang-Mills theory. They have to satisfy both, Dyson-Schwinger equations and functional renormalisation group equations. Then, consistency fixes the relation between the infrared power laws of these Green functions. We discuss consequences for the interpretation of recent results from lattice QCD.Comment: 24 pages, 8 figure

    Sensitivity analysis of the probabilistic damage stability regulations for RoPax vessels

    Get PDF
    In the light of the newly developed harmonised probabilistic damage stability regulations, set to come into force in 2009, this article presents a systematic and thorough analysis of the sensitivity of the Attained Subdivision Index with reference to a wide range of related design parameters. The sensitivity of the probabilistic regulations was investigated for a typical large RoPax vessel, with variation of parameters, such as the number, positioning and local optimisation of transverse bulkheads; the presence and position of longitudinal bulkheads below the main vehicle deck; the presence of side casings; and the height of the main deck and double bottom. The effects of water on deck and of operational parameters (draught, centre of gravity and trim) were also investigated. The results of the study, presented in graphical form, can provide valuable assistance to the designer when determining subdivision characteristics at the very early stage of the design process, resulting in optimal, efficient and safe ships

    Signatures of confinement in Landau gauge QCD

    Get PDF
    We summarise an analysis of the infrared regime of Landau gauge QCD by means of a flow equation approach. The infrared behaviour of gluon and ghost propagators is evaluated. The results provide further evidence for the Kugo-Ojima confinement scenario. We also discuss their relation to results obtained with other functional methods as well as the lattice.Comment: 3 pages, talk given by JMP at 6th Conference on Quark Confinement and the Hadron Spectrum, Villasimius, Sardinia, Italy, 21-25 Sep 200

    Shuttle S-band communications technical concepts

    Get PDF
    Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed

    Renormalization flow of Yang-Mills propagators

    Full text link
    We study Landau-gauge Yang-Mills theory by means of a nonperturbative vertex expansion of the quantum effective action. Using an exact renormalization group equation, we compute the fully dressed gluon and ghost propagators to lowest nontrivial order in the vertex expansion. In the mid-momentum regime, p2O(1)GeV2p^2\sim\mathcal{O}(1)\text{GeV}^2, we probe the propagator flow with various {\em ans\"atze} for the three- and four-point correlations. We analyze the potential of these truncation schemes to generate a nonperturbative scale. We find universal infrared behavior of the propagators, if the gluon dressing function has developed a mass-like structure at mid-momentum. The resulting power laws in the infrared support the Kugo-Ojima confinement scenario.Comment: 28 pages, 5 figures. V2: Typos corrected and reference adde

    Spacetimes foliated by Killing horizons

    Full text link
    It seems to be expected, that a horizon of a quasi-local type, like a Killing or an isolated horizon, by analogy with a globally defined event horizon, should be unique in some open neighborhood in the spacetime, provided the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our paper is to verify whether that intuition is correct. If one can extend a so called Kundt metric, in such a way that its null, shear-free surfaces have spherical spacetime sections, the resulting spacetime is foliated by so called non-expanding horizons. The obstacle is Kundt's constraint induced at the surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement that a solution be globally defined on the sphere. We derived a transformation (reflection) that creates a solution to Kundt's constraint out of data defining an extremal isolated horizon. Using that transformation, we derived a class of exact solutions to the Einstein or Einstein-Maxwell equations of very special properties. Each spacetime we construct is foliated by a family of the Killing horizons. Moreover, it admits another, transversal Killing horizon. The intrinsic and extrinsic geometry of the transversal Killing horizon coincides with the one defined on the event horizon of the extremal Kerr-Newman solution. However, the Killing horizon in our example admits yet another Killing vector tangent to and null at it. The geometries of the leaves are given by the reflection.Comment: LaTeX 2e, 13 page

    Functional renormalization group in the broken symmetry phase: momentum dependence and two-parameter scaling of the self-energy

    Full text link
    We include spontaneous symmetry breaking into the functional renormalization group (RG) equations for the irreducible vertices of Ginzburg-Landau theories by augmenting these equations by a flow equation for the order parameter, which is determined from the requirement that at each RG step the vertex with one external leg vanishes identically. Using this strategy, we propose a simple truncation of the coupled RG flow equations for the vertices in the broken symmetry phase of the Ising universality class in D dimensions. Our truncation yields the full momentum dependence of the self-energy Sigma (k) and interpolates between lowest order perturbation theory at large momenta k and the critical scaling regime for small k. Close to the critical point, our method yields the self-energy in the scaling form Sigma (k) = k_c^2 sigma^{-} (k | xi, k / k_c), where xi is the order parameter correlation length, k_c is the Ginzburg scale, and sigma^{-} (x, y) is a dimensionless two-parameter scaling function for the broken symmetry phase which we explicitly calculate within our truncation.Comment: 9 pages, 4 figures, puplished versio

    Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results

    Full text link
    We investigate the Dyson-Schwinger equations for the gluon and ghost propagators and the ghost-gluon vertex of Landau-gauge gluodynamics in two dimensions. While this simplifies some aspects of the calculations as compared to three and four dimensions, new complications arise due to a mixing of different momentum regimes. As a result, the solutions for the propagators are more sensitive to changes in the three-point functions and the ansaetze used for them at the leading order in a vertex a expansion. Here, we therefore go beyond this common truncation by including the ghost-gluon vertex self-consistently for the first time, while using a model for the three-gluon vertex which reproduces the known infrared asymptotics and the zeros at intermediate momenta as observed on the lattice. A separate computation of the three-gluon vertex from the results is used to confirm the stability of this behavior a posteriori. We also present further arguments for the absence of the decoupling solution in two dimensions. Finally, we show how in general the infrared exponent kappa of the scaling solutions in two, three and four dimensions can be changed by allowing an angle dependence and thus an essential singularity of the ghost-gluon vertex in the infrared.Comment: 24 pages; added references, improved choices of parameters for vertex models; identical to version published in JHE
    corecore