307 research outputs found

    Effective dynamics of the hybrid quantization of the Gowdy T^3 universe

    Get PDF
    The quantum dynamics of the linearly polarized Gowdy T^3 model (compact inhomogeneous universes admitting linearly polarized gravitational waves) is analyzed within Loop Quantum Cosmology by means of an effective dynamics. The analysis, performed via analytical and numerical methods, proves that the behavior found in the evolution of vacuum (homogeneous) Bianchi I universes is preserved qualitatively also in the presence of inhomogeneities. More precisely, the initial singularity is replaced by a big bounce which joins deterministically two large classical universes. In addition, we show that the size of the universe at the bounce is at least of the same order of magnitude (roughly speaking) as the size of the corresponding homogeneous universe obtained in the absence of gravitational waves. In particular, a precise lower bound for the ratio of these two sizes is found. Finally, the comparison of the amplitudes of the gravitational wave modes in the distant future and past shows that, statistically (i.e., for large samples of universes), the difference in amplitude is enhanced for nearly homogeneous universes, whereas this difference vanishes in inhomogeneity dominated cases. The presented analysis constitutes the first systematic effective study of an inhomogeneous system within Loop Quantum Cosmology, and it proves the robustness of the results obtained for homogeneous cosmologies in this context.Comment: 21 pages, 11 figures, RevTex4-1 + BibTe

    Description of Supernova Data in Conformal Cosmology without Cosmological Constant

    Get PDF
    We consider cosmological consequences of a conformal invariant formulation of Einstein's General Relativity where instead of the scale factor of the spatial metrics in the action functional a massless scalar (dilaton) field occurs which scales all masses including the Planck mass. Instead of the expansion of the universe we get the Hoyle-Narlikar type of mass evolution, where the temperature history of the universe is replaced by the mass history. We show that this conformal invariant cosmological model gives a satisfactory description of the new supernova Ia data for the effective magnitude - redshift relation without a cosmological constant and make a prediction for the high-redshift behavior which deviates from that of standard cosmology for z>1.7z>1.7.Comment: 13 pages, 1 figure, includes discussion of SN1997ff, text revise
    • …
    corecore