22 research outputs found

    The Use of Bovine Pericardial Buttress on Linear Stapler Fails to Reduce Pancreatic Fistula Incidence in a Porcine Pancreatic Transection Model

    Get PDF
    We investigate the effectiveness of buttressing the surgical stapler to reduce postoperative pancreatic fistulae in a porcine model. As a pilot study, pigs (n = 6) underwent laparoscopic distal pancreatectomy using a standard stapler. Daily drain output and lipase were measured postoperative day 5 and 14. In a second study, pancreatic transection was performed to occlude the proximal and distal duct at the pancreatic neck using a standard stapler (n = 6), or stapler with bovine pericardial strip buttress (n = 6). Results. In pilot study, 3/6 animals had drain lipase greater than 3x serum on day 14. In the second series, drain volumes were not significantly different between buttressed and control groups on day 5 (55.3 ± 31.6 and 29.3 ± 14.2 cc, resp.), nor on day 14 (9.5 ± 4.2 cc and 2.5 ± 0.8 cc, resp., P = 0.13). Drain lipase was not statistically significant on day 5 (3,166 ± 1,433 and 6,063 ± 1,872 U/L, resp., P = 0.25) or day 14 (924 ± 541 and 360 ± 250 U/L). By definition, 3/6 developed pancreatic fistula; only one (control) demonstrating a contained collection arising from the staple line. Conclusion. Buttressed stapler failed to protect against pancreatic fistula in this rigorous surgical model

    Adaptive Honeypot Engagement through Reinforcement Learning of Semi-Markov Decision Processes

    Full text link
    A honeynet is a promising active cyber defense mechanism. It reveals the fundamental Indicators of Compromise (IoCs) by luring attackers to conduct adversarial behaviors in a controlled and monitored environment. The active interaction at the honeynet brings a high reward but also introduces high implementation costs and risks of adversarial honeynet exploitation. In this work, we apply infinite-horizon Semi-Markov Decision Process (SMDP) to characterize a stochastic transition and sojourn time of attackers in the honeynet and quantify the reward-risk trade-off. In particular, we design adaptive long-term engagement policies shown to be risk-averse, cost-effective, and time-efficient. Numerical results have demonstrated that our adaptive engagement policies can quickly attract attackers to the target honeypot and engage them for a sufficiently long period to obtain worthy threat information. Meanwhile, the penetration probability is kept at a low level. The results show that the expected utility is robust against attackers of a large range of persistence and intelligence. Finally, we apply reinforcement learning to the SMDP to solve the curse of modeling. Under a prudent choice of the learning rate and exploration policy, we achieve a quick and robust convergence of the optimal policy and value.Comment: The presentation can be found at https://youtu.be/GPKT3uJtXqk. arXiv admin note: text overlap with arXiv:1907.0139

    Multi-rate Threshold FlipThem

    Get PDF
    A standard method to protect data and secrets is to apply threshold cryptography in the form of secret sharing. This is motivated by the acceptance that adversaries will compromise systems at some point; and hence using threshold cryptography provides a defence in depth. The existence of such powerful adversaries has also motivated the introduction of game theoretic techniques into the analysis of systems, e.g. via the FlipIt game of van Dijk et al. This work further analyses the case of FlipIt when used with multiple resources, dubbed FlipThem in prior papers. We examine two key extensions of the FlipThem game to more realistic scenarios; namely separate costs and strategies on each resource, and a learning approach obtained using so-called fictitious play in which players do not know about opponent costs, or assume rationality

    Strategic Learning for Active, Adaptive, and Autonomous Cyber Defense

    Full text link
    The increasing instances of advanced attacks call for a new defense paradigm that is active, autonomous, and adaptive, named as the \texttt{`3A'} defense paradigm. This chapter introduces three defense schemes that actively interact with attackers to increase the attack cost and gather threat information, i.e., defensive deception for detection and counter-deception, feedback-driven Moving Target Defense (MTD), and adaptive honeypot engagement. Due to the cyber deception, external noise, and the absent knowledge of the other players' behaviors and goals, these schemes possess three progressive levels of information restrictions, i.e., from the parameter uncertainty, the payoff uncertainty, to the environmental uncertainty. To estimate the unknown and reduce uncertainty, we adopt three different strategic learning schemes that fit the associated information restrictions. All three learning schemes share the same feedback structure of sensation, estimation, and actions so that the most rewarding policies get reinforced and converge to the optimal ones in autonomous and adaptive fashions. This work aims to shed lights on proactive defense strategies, lay a solid foundation for strategic learning under incomplete information, and quantify the tradeoff between the security and costs.Comment: arXiv admin note: text overlap with arXiv:1906.1218

    Aerodynamic Investigations of Paradrogue Assembly in Aerial Refueling System

    No full text

    Preclinical models of acute liver failure: a comprehensive review

    No full text
    Acute liver failure is marked by the rapid deterioration of liver function in a previously well patient over period of days to weeks. Though relatively rare, it is associated with high morbidity and mortality. This makes it a challenging disease to study clinically, necessitating reliance on preclinical models as means to explore pathophysiology and novel therapies. Preclinical models of acute liver failure are artificial by nature, and generally fall into one of three categories: surgical, pharmacologic or immunogenic. This article reviews preclinical models of acute liver failure and considers their relevance in modeling clinical disease
    corecore