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Abstract. A standard method to protect data and secrets is to apply threshold
cryptography in the form of secret sharing. This is motivated by the acceptance
that adversaries will compromise systems at some point; and hence using thresh-
old cryptography provides a defence in depth. The existence of such powerful
adversaries has also motivated the introduction of game theoretic techniques into
the analysis of systems, e.g. via the FlipIt game of van Dijk et al. This work
further analyses the case of FlipIt when used with multiple resources, dubbed
FlipThem in prior papers. We examine two key extensions of the FlipThem game
to more realistic scenarios; namely separate costs and strategies on each resource,
and a learning approach obtained using so-called fictitious play in which players
do not know about opponent costs, or assume rationality.

1 Introduction

The traditional methodology of securing systems is to rely solely on cryptographic
means to ensure protection of data (via encryption) and authentication (via signatures
and secured-passwords). However, both of these techniques rely on some data being
kept secure. The advent of attacks such as Advanced Persistent Threats (APTs) means
that exfiltration of the underlying cryptographic keys, or other sensitive data, is now a
real threat. To model such long term stealthy attacks researchers have turned to game
theory [1, 21, 24, 28], adding to a growing body of work looking at game theory in cy-
bersecurity in various scenarios [7, 15, 34]. Probably the most influential work applying
game theory in the security area has been the FlipIt game [33]; with the follow up paper
[5] demonstrating applications of FlipIt to various examples including credential man-
agement, virtual machine refresh and cloud auditing for service-level-agreement. FlipIt
has gained traction and popularity due to the assumption that the adversary can always
get into the system; thus aligning with the new rhetoric in the security industry that
compromise avoidance is no longer a realistic possibility and it is now about limiting
the amount of compromise as quickly and efficiently as possible.

In FlipIt, two players, aptly named the defender and attacker, fight over control of a
single resource. Each player has their own button which, when pressed, will give them
control over the resource assigning them some form of benefit. Pressing the button has
a cost associated to it. The FlipIt paper examines this game as a way of modelling
attacks in which a stealthy adversary is trying to control a single resource. For example
it could be used to model an adversary which compromises passwords (the adversary’s
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button press corresponds to a break of a system password), whilst the defender resets
passwords occasionally (via pressing their button in the game). FlipIt has of course been
generalised in many different directions [10, 16, 18, 25, 23, 26].

However, a standard defence against having a single point of failure for secure data
(be it real data or cryptographic secrets), is to use some form of distributed cryptogra-
phy [9], usually using some form of secret sharing [29]. Such techniques can either be
used directly as in [4, 30], or using secret sharing to actually compute some data as in
Multi-Party Computation [2, 8]. To capture this and other such situations, Laszka et al.
[17] introduce a FlipThem game in which there are multiple resources, each equipped
with a button as in FlipIt, and the attacker obtains benefit only by gaining control of
every resource in the game. This models the full threshold situation in distributed cryp-
tographic solutions.

The FlipThem game is extended by Leslie et al. [19] to the partial threshold case,
where the attacker is not required to gain control of the whole system but only a fraction
of the number of resources in order to have some benefit. Assuming both players select
the rates of Poisson processes controlling the pressing of buttons, they calculate the
proportion of time the attacker will be in control of the system in order to gain some
benefit. Nash equilibrium rates of play are calculated which depend on move costs and
the threshold of resources required for the attacker to gain any benefit.

A major downside of the analysis in [19] is that the button associated to all resources
are given the same cost and move rate for the attacker (and similarly for the defender).
So in this current work we introduce the more realistic setting in which a player may
have different move rates and costs associated to each resource. For example one re-
source may be easier to apply patches to than others, or one may be easier to attack
due to the operating system it runs. We calculate Nash equilibrium rates of play for this
more realistic setting.

We also introduce a framework from the learning in games literature [12] which
models the situation where each player responds to the observed actions of the other
player, instead of calculating an equilibrium. This adaptive framework is required once
we drop the unrealistic assumption that players know their opponent’s costs and reward
functions, and our version makes considerably weaker assumptions on the information
available to the players than the adaptive framework of [33]. In particular we introduce
learning into a situation where the FlipThem game is played over a continuing sequence
of epochs. We assume players repeatedly calculate the average observed rate of their op-
ponent and respond optimally to that, resulting in a learning rule known as fictitious play
[6, 12]. Performing multiple experiments, we find that when the costs result in a game
with an interior equilibrium point (i.e. one in which all players play non-zero rates of
all resources) the fictitious play procedure converges to this equilibrium. On the other
hand, when there is not an interior equilibrium, we find unstable behaviour in the learn-
ing procedure. This result is important in the real world: the fictitious play formulation
assumes that players know only their own benefit functions and can observe the play
of others, yet the players still manage to converge to the calculated equilibria. Thus in
these situations, even if our players are unable to calculate equilibrium strategies, their
naı̈ve optimising play will converge to an equilibrium and players’ long term rewards
are captured by the equilibrium payoffs.
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2 Model

Our Multi-Rate Threshold FlipThem game has two players, an attacker and defender,
fighting for control over the set of n resources, R = {R1, . . . ,Rn}. Both players
have buttons in front of each resource that when pressed will give them control over
that specific resource. For each resource Ri the defender and attacker will play an
exponential rate µi and λi, respectively, meaning that the times of moves for a player
on a given resource will follow a Poisson Process with rate given by µi or λi. Using
Markov Chain theory [13] we can construct explicit values for the proportion of time the
each player is in control of resourceRi depending on their rates of play. This stationary
distribution is given by πi =

(
πi0, π

i
1

)
= 1

µi+λi
(µi, λi) , and indicates that the defender

is in control of the resource Ri a proportion µi/(λi + µi) of the time, and the attacker
is in control a proportion λi/(λi + µi) of the time. We assume that each behaviour on
each resource is independent of all the others, and hence the proportion of time that the
attacker is control of a particular set of resources C, with the defender in control of the
other resources, is simply given by the product of the individual resource proportions:∏
i∈C

λi

λi+µi

∏
i/∈C

µi

λi+µi
.

At any point in time, the attacker will have compromised k resources, whilst the
defender is in control of the remaining n − k resources, for some k. In order for the
attacker to have some gain, she must compromise t or more resources. The value t
is called the threshold, as used in a number of existing threshold security situations
discussed in the introduction. From a game theory point of view, whenever k ≥ t the
attacker obtains benefit, whilst when k < t the defender obtains benefit.

From this we can construct benefit functions for both players. For the attacker it is
the proportion of time she is in control of a number of resources over the threshold,
such that k ≥ t, penalised by a cost for moving. For the defender it is the proportion of
time that she is in control of at least n − t + 1 resources, again penalised by a cost of
moving. Thus, the benefit functions for attacker and defender respectively are given by

βD(µ,λ) = 1−
∑

C⊆{1,...,n}
|C|≥t

[∏
i∈C

λi
λi + µi

]
·

[∏
i/∈C

µi
λi + µi

]
−
∑
i

di · µi

βA(µ,λ) =
∑

C⊆{1,...,n}
|C|≥t

[∏
i∈C

λi
λi + µi

]
·

[∏
i/∈C

µi
λi + µi

]
−
∑
i

ai · λi

(1)

where the ai and di are the (relative) move costs on resource i for attacker and defender,
which are assumed fixed throughout the game, and µ and λ are the vectors of rates over
all resources for the defender and attacker, respectively, constrained to be non-negative.
The benefit functions in (1) show that the game is non-zero-sum, meaning we are unable
to use standard zero-sum results found in the literature [?].

3 Finding the equilibria of Multi-Rate (n, t)-FlipThem

We begin by finding the equilibria of the the multi-rate version of the FlipThem game
with n resources. This represents a more realistic scenario than previous studies, by
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allowing players to favour certain resources based on differential costs of attacking or
defending, for example when a company owns multiple servers located in different areas
and with different versions of operating systems. We want to find a stationary point or
equilibrium of the two benefit functions (1) in terms of purely the costs of moving on
each resource. This would mean both players are playing at a rate that maximises their
own benefit function with respect to their opponents play and move costs. Thus, they
would not wish to deviate from their current playing strategy or rates. This is known as
a Nash Equilibrium [22]. Our challenge in this article, compared with previous works
such as [19], is that neither benefit function is trivial to optimise simultaneously across
the vector of rates.

3.1 Full Threshold: Multi-rate (n, n)-FlipThem

We begin with the full threshold case in which the attacker must control all resources
in order to obtain some benefit. The algebra is easier in this case; the partial threshold
version is addressed in Section 3.2. For this full threshold case, the general benefit
functions (1) simplify to

βD(µ,λ) = 1−
n∏
i=1

λi
µi + λi

−
n∑
i=1

di · µi

βA(µ,λ) =

n∏
i=1

λi
µi + λi

−
n∑
i=1

ai · λi.
(2)

Note that these benefit functions reduce to those of [19] if we set µi = µ, λi = λ,
ai =

a
n and di = d

n for all i.
We start by finding the best response function of the defender, which is a function

brD mapping attacker rates λ to the the set of all defender rates µ which maximise
defender payoff βD when the attacker plays rates λ. A necessary, though not suffi-
cient, condition for µ to maximise βD is that each µi maximises βD conditional on the
other values of µ. Furthermore, maxima with respect to µi occur either when the par-
tial derivative ∂βD

∂µi
is 0, or at a boundary of the parameter space. Equating this partial

derivative to zero to gives

∂βD
∂µi

= 0⇒ −
n∏
j=1

λj + di · (λi + µi)
2 ·

n∏
j=1,j 6=i

(µj + λj) = 0.

This is a quadratic in µi, meaning that fixing the defender’s benefit function shown in
(2) for all attacker rates λ and all defender rates µj where j 6= i, gives only two turning
points. Since βD decreases to negative infinity as µi gets large, the two candidates for
a maximising µi are at the upper root of this equation, or at µi = 0. A non-0 µi must
therefore satisfy

µi = −λi +

√√√√λi
di
·

n∏
j=1,j 6=i

λj
(µj + λj)

. (3)
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Of course, a µi satisfying this equation could be negative and thus inadmissible as a
rate, but all we claim for now is that any non-zero µi must be of the this form.

We can use the same method in differentiating the attacker’s benefit with respect to
her rate λi for resourceRi, equating this to zero and manipulating to give

λi = −µi +

√√√√µi
ai
·

n∏
j=1,j 6=i

λj
(µj + λj)

. (4)

Any Nash equilibrium in the interior of the strategy space (i.e. with strictly positive
rates on all resources) must be a simultaneous solution of (3) and (4). Note that both
equations can be rearranged to express λi + µi in terms of a square root, and then we
can equate the square root terms to find that λi

µi
= di

ai
. Substituting this relationship

back in to (3) and (4) gives

λ∗i =
di

(ai + di)2
·
n∏
j=1
j 6=i

dj
(aj + dj)

, µ∗i =
ai

(ai + di)2
·
n∏
j=1
j 6=i

dj
(aj + dj)

. (5)

If a company was reviewing its defensive systems and was able to calculate these
equilibria, they can see the rate at which they’d have to move in order to defend their
system optimally, under the assumption that the attacker is also playing optimally. (Of
course, if the attacker was playing sub-optimally, the defender would be able to gain
a larger pay off.) From these equilibria the parties are able to calculate the long run
proportion of time each of their resources within the system would be compromised
by looking at the stationary distribution shown in section 2. From this information, the
company can also calculate the value of the benefit functions for each player when
playing these rates. This is useful in the real world as it can be used by companies
to make strategic decisions on the design of their systems. We do this by substituting
the two equilibria back into the benefit functions (2). We can express these rewards in
terms of the ratio between the costs of each resource, ρj =

aj
dj

, giving the dimensionless
expression

β∗D = 1−
n∏
i=1

1

ρi + 1

1 + n∑
j=1

ρj
ρj + 1

 ,
β∗A =

n∏
i=1

1

ρi + 1

1− n∑
j=1

ρj
ρj + 1

 .
(6)

We have expressed the payoffs to both players at the putative interior equilibrium.
If this is an equilibrium, neither player will wish to deviate from these equilibrium
rates. However we have thus far ignored the potential maximising µi at 0. While no
individual µi or λi will deviate unilaterally to zero (recall that the partial derivatives
have only two zeroes, and thus payoff decreases as µi decreases to zero), if several rates
simultaneously switch the payoff to a player could increase. We therefore consider what
happens when rates can switch to zero, starting with the attacker.
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By considering the attacker’s benefit function (2), we can see that if the attacker
plays a zero rate on any resource, then in order to maximise the payoff, she should play
zero rates on the rest of the system. In other words, she should drop out of the game
and receive zero reward. Thus by comparing the attacker payoff in (6) to zero we can
see quickly whether this is indeed a point at which the attacker will be content.

For the defender, things are more complicated. However, we can see from the benefit
function (2) that a zero payoff by withdrawing from the game is again an option, and so
we compare the equilibrium payoff (6) to zero as a partial check on whether the fixed
point (5) is an equilibrium. We do not not explicitly discount partial dropout of the
defender, but note that by dropping out the defender is effectively reducing the game
to a smaller number of servers, and hence should not have invested in the additional
servers in the first place. Comparing the benefits in (6) to zero it is easy to see in this
full threshold case that the defender’s benefit β∗D is always non-negative when playing
(5) meaning dropping out is not an equilibrium point for the defender, whereas β∗A can
drop below 0. We use this to find a condition which must be satisfied for the point (5)
to be an equilibrium. In particular, we require β∗A in (6) to be positive, and therefore

1−
n∑
j=1

ρj
ρj + 1

> 0. (7)

Thus, we have a condition (7) that, if satisfied, the attacker will not drop out of the game.
If the condition is not satisfied, the attacker will prefer to drop out of the game entirely
than to play at the interior equilibrium. Ensuring condition (7) is met can thus be viewed
as an design criterium for system engineers when designing defensive systems.

3.2 Partial Threshold: Multi-Rate (n, t)-FlipThem

So far we have extended the full threshold FlipThem game [17] by obtaining the equi-
libria of the benefit functions constructed from the proportion of time the attacker is in
control of the whole system. In order to generalise this further, we return to our partial
threshold case in which the attacker gains benefit from controlling only t < n resources.
Our general benefit functions for both players are written in (1); the analysis is anal-
ogous to methods demonstrated above in section 3.1. In this (n, t)-threshold case, the
analogous best response conditions to (3) and (4) are

µi = −λi +
√
λi · Si
di

and λi = −µi +
√
µiSi
ai

, (8)

where we have introduced Si to denote

∑
C⊆Ai

|C|≥t

∏
j∈C

λj
λj + µj

 ·
∏
j /∈C

µj
λj + µj


and Ai = {1, . . . , i − 1, i + 1, . . . , n}. Interestingly, equating the square root terms
results in the same relationship µi

ai
= λi

di
as in Section 3.1. Finally, substituting this
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relationship back into the best response functions (8) gives us

µ∗i =
ai

(ai + di)2
·
∑
C⊆Ai

|C|≥t

∏
j∈C

dj
aj + dj

 ·
∏
j /∈C

aj
aj + dj

 ,

λ∗i =
di

(ai + di)2
·
∑
C⊆Ai

|C|≥t

∏
j∈C

dj
aj + dj

 ·
∏
j /∈C

aj
aj + dj

 .
(9)

As in Section 3.1, (9) is a Nash equilibrium for the game, unless one or other player
can improve their payoff by dropping out of one or more resources. We can substitute
these rates back into the players’ benefit functions as we did in the full threshold case
in Section 3.1 to check that the payoffs at this putative equilibrium are non-negative.
However, the formulae become very complicated to write down explicitly in general
and we leave this to Section 4, when we deal with specific examples. Note this also
means we do not have a clean condition analogous to (7) to test whether (9) is an
equilibrium.

4 Introducing Fictitious Play into Multi-Rate (n, t)-FlipThem

While the equilibrium analysis above offers useful insight into the the security game
Multi-Rate Threshold FlipThem, it can be viewed as an unrealistic model of real world
play. In particular it is extremely unlikely the players have full knowledge of the pay-
off and move costs of their opponent, and therefore cannot calculate the equilibrium
strategies. We now introduce game-theoretical learning, in which the only knowledge a
player has of their opponent is the actions that they take. When the game is repeatedly
played through time, players respond to their observations and attempt to improve their
payoff. In this article we focus on a method of learning known as fictitious play [6, 3,
12].

We break the game up into periods of fixed length of time. At the end of period τ
each player observes the number of times the button of each resource i was pressed by
their opponent in that period. Denote by λτi and µτi the actual rate played by attacker
and defender in period τ , and use λ̃i

τ
and µ̃i

τ to denote the number of button presses
by the attacker and defender respectively, normalised by the length of the time interval.
After T plays of the game, each player averages the observations he has made of the
opponent, resulting in estimates for each resource

λ̂Ti =
1

T

T∑
τ=1

λ̃τi , µ̂Ti =
1

T

T∑
τ=1

µ̃τi .

The players select their rates for time period T + 1 by playing a best response to their
estimates;

µT +1
i = brDi (λ̂

T
), λT +1

i = brAi (µ̂
T ).
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where µ̂T and λ̂
T

are the defender and attacker’s vector of rates played on each re-
source. If it were the case that opponent rates were constant, the averaging of observa-
tions over time would be an optimal estimation of those rates. Since both players are
learning, the rates are not constant, and averaging uniformly over time does not result
in statistically optimal prediction. However lack of a better informed model of rate evo-
lution means that averaging is retained as the standard mechanism in fictitious play; see
[20, 32] for attempts to move beyond this assumption.

1 Set maximum periods to be played;
2 Randomly assign move costs for each player;
3 Randomly choose initial starting rates for both players;
4 One period is played;
5 while Number of periods has not reached the maximum do
6 Each player receives last period’s observation of their opponent’s play;
7 Each player averages their opponent’s history to form a belief;
8 Each player uses their best response function to calculate rate for this period;
9 Each player plays this rate;

10 end

Algorithm 1: Fictitious Play algorithm for multi-rate (n, t)-FlipThem

This fictitious play process is described in Algorithm 1, where we see the simplicity
of the learning process and the sparsity of the information required by the players. The
only challenging step is in calculating the best response function; as observed in Section
3 the best response of each player is not in general a simple analytical function of the
rates of the opponent. From the defender’s point of view we consider all subsets of
the resources; setting the rates of these resources to zero, and solving (8) for the non-
zero rates, we find a putative best response; the set of rates with the highest payoff

given the fixed belief λ̂
T

is the best response. The attacker’s best response is calculated
analogously. An interesting question, which we address, is whether this simple learning
process converges to the equilibria calculated previously in Section 3.

The process we have defined is a discrete time stochastic process. It is in actual
fact a stochastic fictitious play process [11]; since the number of button presses in a
period is Poisson with expected value the played rate multiplied by the length of the
time interval, the observations can be seen to satisfy

µ̃T +1
i = brDi (λ̂

T
) +MT+1

µ,i , λ̃T +1
i = brAi (µ̂

T ) +MT +1
λ,i ,

where E(Mτ+1
·,· |Fτ ) = 0 if Fτ denotes the history of the process up to time τ . The

methods of [3] then apply directly to show that the convergence (or otherwise) of
the discrete stochastic process is governed by the continuous deterministic differential
equations

dλ

dt
= br(µ)− λ, dµ

dt
= br(λ)− µ. (10)
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In standard fictitious play analyses, one might show that solutions of (10) are globally
convergent to the equilibrium set. This is commonly achievable only in some classes of
games, and since we do not have a zero-sum game we have not been able to show the
required global convergence of (10).

4.1 Original FlipIt

The game of FlipIt can be considered a special case of our game of multi-rate (n, t)-
FlipThem, seen by setting n = t = 1. This has the advantage that the best responses
can be written in closed form, and we can use (10) to set up a two dimensional ordinary
differential equation in terms of the players’ rates and time. We start by writing the
benefit functions for this special case

βD(µ, λ) = 1− λ

µ+ λ
− dµ, βA(µ, λ) =

λ

µ+ λ
− aλ. (11)

Differentiating the players’ benefit functions (11) in terms of their respective resource
rates and then solving for these gives the best response functions

brD(λ) =

(
−λ+

√
λ

d

)+

, brA(µ) =
(
−µ+

√
µ

a

)+

where (x)+ = max(x, 0). The ordinary differential equation (10) becomes

dλ

dt
=

(
−µ+

√
µ

a

)+

− λ, dµ

dt
=

(
−λ+

√
λ

d

)+

− µ. (12)

This is a two dimensional ordinary differential equation in terms of the players’ rates
and time. The plot of the phase portrait of this is shown in Figure 1. where we have used
d = 0.1, a = 0.3 as the move costs. It easy to see that the arrows demonstrating the di-
rection of the rates over time converge upon a single point. This point is the equilibrium
we can calculate easily from the more general equilibria derived in Section 3.2. We can
also use Algorithm 1 to plot trajectories of the system in order to view convergence of
the system; the convergence is monotonic and uninteresting so we omit the plots.
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Fig. 1. Phase Portrait of (12) with d = 0.1, a = 0.3

4.2 (n, t)-FlipThem

A multi-resource example in which we retain one rate per player (as opposed to one
rate per resource for each player) is given by the situation in [17] and [19]; each player
chooses a rate at which to play all resources. Whilst this allows us to retain a two-
dimensional system when considering the multiple resource case, unfortunately ob-
taining explicit best response functions is extremely difficult. Therefore, we revert to
Algorithm 1 using time intervals of length 100; we fix this time interval for all further
experiments in this article.

As in those previous works, we consider the stationary distribution of the system,
with the defender playing with rate µ and attacker rate λ. This results in a stationary
distribution for the whole system, given by

π =
1

(µ+ λ)n

(
µn, n · λ · µn−1, . . . ,

(
n

k

)
· µn−k · λk, . . . , n · µ · λn−1, λn

)
,

where the states correspond to the number of compromised resources, ranging from
from 0 to n. Benefit functions for both players are given by

βD(µ, λ) = 1−
n∑
i=t

πi − d · µ = 1− 1

(µ+ λ)n
·
n∑
i=t

(
n

i

)
· µn−i · λi − d · µ,

βA(µ, λ) =

n∑
i=t

πi − a · λ =
1

(µ+ λ)n
·
n∑
i=t

(
n

i

)
· µn−i · λi − a · λ,

and best responses are calculated by differentiating these benefit functions, as in [19]
and Section 3. In Figure 2 we plot the rate of the attacker and defender respectively by
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applying Algorithm 1 to random starting rates for both players, with (3, 2)-threshold
and costs a = 0.65 and d = 0.5. The straight horizontal lines represents the players’
Nash equilibrium rates that can be calculated as a special case of the general equilibrium
from (9). Note that we have chosen these costs in order to produce positive benefits
for both players whilst playing the calculated Nash equilibrium. We see that both the
defender’s and attacker’s mean rate converges to these lines.
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Fig. 2. Mean of the defender’s and attacker’s rate with (3, 2)-threshold and ratio ρ = a
d
= 1.3.

4.3 Multi-Rate (n, t)-FlipThem

Finally, we come to the most general case of the paper, Multi-Rate (n, t)-FlipThem. As
observed previously, depending on the player’s belief of their opponents rates on each
resource, they may choose to drop out of playing on a certain resource, or perhaps even
all of them. Our best response functions must iterate through all possibilities of setting
the resource rates to zero and chooses the configuration with the highest benefit as the
best response. This solution is then used as µT+1 or λT +1 for the following period
T + 1.

We want to find a condition such that we can gain some insight as to whether in this
most complicated setting our iterative learning rule will converge to the equilibria we
calculated analytically in Section 3.2. We experimented with multiple combinations of
n and t, randomly simulating costs of both players. From these empirical results, we
observe that convergence occurs whenever the internal fixed point (9) results in non-
negative benefits to both players.

Specific case (n = 3, t = 2): In order to illustrate the outcomes of our fictitious
play algorithm we specify our threshold (n, t) = (3, 2), and choose two representative
cases of our randomly simulated examples. These particular examples were selected for
ease of display, allowing us to illustrate their properties of convergence (or divergence)
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clearly on just one figure. The first, when the benefits are positive and the internal
equilibrium is not ruled out, we term ‘success’. The second is an example in which the
internal fixed point is not an equilibrium, and we term this case ‘failure’.

Success: Our first example is with ratios (ρ1, ρ2, ρ3) ≈ (0.7833, 0.7856, 0.7023) and
attacker costs (a1, a2, a3) ≈ (0.6237, 0.5959, 0.5149). Thus, the benefit values at equi-
librium are β∗D ≈ 0.0359 and β∗A ≈ 0.2429. Since we have positive payoff for both
players we expect convergence of the learning algorithm. This is exactly what we ob-
serve in Figure 3; convergence of rates to the lines representing the equilibria calculated
in Section 3.2.
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Fig. 3. Mean of the defender’s rates (top) and attacker’s rates (bottom) on all resources with
(3, 2)-threshold and ratios (ρ1, ρ2, ρ3) ≈ (0.7833, 0.7856, 0.7023)

Failure: Our second example shows a lack of convergence when conditions are not met.
Therefore, we choose ratios to be (ρ1, ρ2, ρ3) ≈ (0.5152, 0.5074, 0.5010) and attacker
costs (a1, a2, a3) ≈ (0.2597, 0.2570, 0.2555). This gives ‘equilibrium’ benefits for the
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defender and attacker of β∗D ≈ −0.0354 and β∗A ≈ 0.4368. The defender’s benefit in
this situation is negative, meaning we expect a lack of convergence. Figure 4 shows
the development of both players’ rates over time. We can see the rates do not approach
anywhere near the equilibrium. Intuitively, this makes sense as the defender will not
choose to end up playing in a game in which she receives negative payoff when she can
drop out of the game completely in order to receive zero payoff.
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Fig. 4. Mean of the defender’s rates (top) and attacker’s rates (bottom) on all resources with
(3, 2)-threshold and ratios (ρ1, ρ2, ρ3) ≈ (0.5152, 0.5074, 0.5010).

We can see evidence of this dropping out in Fig. 5, which shows the rates the de-
fender is actually playing on the resource (rather than the mean over time). The defender
has certain periods where she drops out of the game entirely. The attacker’s mean rates
then start to drop until a point when the defender decides to re-enter the game.

To see a reason for this volatility, Figure 6 shows the defender’s payoff surface for
nearby attacker strategies on either side of a ‘dropout’ event from Fig. 5. We fix the
defender’s rate on resource 1 and plot the benefit surface as the rates on resources 2 and
3 vary. We also plot the plane of zero reward. It’s easy to observe that the maximum
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Fig. 5. Defender’s actual rates on all resources with (3, 2)-threshold and ratios (ρ1, ρ2, ρ3) ≈
(0.5152, 0.5074, 0.5010).

of this reward surface is above 0 in the left hand plot, but a small perturbation of the
attacker rates pushes the maximal defender benefit below zero in the right hand plot,
thus forcing the defender to drop out entirely. We conjecture that as the ratios decrease
(and therefore become more costly for the defender) the defender drops out of the game
more often within this learning environment.

Fig. 6. Two snapshots of the defender’s reward surface with a slight perturbation in attackers
rates. (Left) The Payoff is just above the 0-plane. (Right) The whole payoff surface is below the
0-plane.
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