1,185 research outputs found

    Helium irradiation effects in polycrystalline Si, silica, and single crystal Si

    Get PDF
    Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin (≈55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change

    Slower alpha rhythm associates with poorer seizure control in epilepsy.

    Get PDF
    OBJECTIVE: Slowing and frontal spread of the alpha rhythm have been reported in multiple epilepsy syndromes. We investigated whether these phenomena are associated with seizure control. METHODS: We prospectively acquired resting-state electroencephalogram (EEG) in 63 patients with focal and idiopathic generalized epilepsy (FE and IGE) and 39 age- and gender-matched healthy subjects (HS). Patients were divided into good and poor (≥4 seizures/12 months) seizure control groups based on self-reports and clinical records. We computed spectral power from 20-sec EEG segments during eyes-closed wakefulness, free of interictal abnormalities, and quantified power in high- and low-alpha bands. Analysis of covariance and post hoc t-tests were used to assess group differences in alpha-power shift across all EEG channels. Permutation-based statistics were used to assess the topography of this shift across the whole scalp. RESULTS: Compared to HS, patients showed a statistically significant shift of spectral power from high- to low-alpha frequencies (effect size g = 0.78 [95% confidence interval 0.43, 1.20]). This alpha-power shift was driven by patients with poor seizure control in both FE and IGE (g = 1.14, [0.65, 1.74]), and occurred over midline frontal and bilateral occipital regions. IGE exhibited less alpha power shift compared to FE over bilateral frontal regions (g = -1.16 [-0.68, -1.74]). There was no interaction between syndrome and seizure control. Effects were independent of antiepileptic drug load, time of day, or subgroup definitions. INTERPRETATION: Alpha slowing and anteriorization are a robust finding in patients with epilepsy and might represent a generic indicator of seizure liability

    Monte Carlo Renormalization Group Analysis of Lattice Ï•4\phi^4 Model in D=3,4D=3,4

    Full text link
    We present a simple, sophisticated method to capture renormalization group flow in Monte Carlo simulation, which provides important information of critical phenomena. We applied the method to D=3,4D=3,4 lattice Ï•4\phi^4 model and obtained renormalization flow diagram which well reproduces theoretically predicted behavior of continuum Ï•4\phi^4 model. We also show that the method can be easily applied to much more complicated models, such as frustrated spin models.Comment: 13 pages, revtex, 7 figures. v1:Submitted to PRE. v2:considerably reduced redundancy of presentation. v3:final version to appear in Phys.Rev.

    Overlap Distribution of the Three-Dimensional Ising Model

    Full text link
    We study the Parisi overlap probability density P_L(q) for the three-dimensional Ising ferromagnet by means of Monte Carlo (MC) simulations. At the critical point P_L(q) is peaked around q=0 in contrast with the double peaked magnetic probability density. We give particular attention to the tails of the overlap distribution at the critical point, which we control over up to 500 orders of magnitude by using the multi-overlap MC algorithm. Below the critical temperature interface tension estimates from the overlap probability density are given and their approach to the infinite volume limit appears to be smoother than for estimates from the magnetization.Comment: 7 pages, RevTex, 9 Postscript figure

    Role of f02 in fluid saturation of oceanic basalt.

    No full text
    Assessing the conditions under which magmas become fluid-saturated has important bearings on the geochemical modelling of magmas because volatile exsolution may profoundly alter the behaviour of certain trace elements that are strongly partitioned in the coexisting fluid1. Saal et al.2 report primitive melt inclusions from dredged oceanic basalts of the Siqueiros transform fault, from which they derive volatile abundances of the depleted mantle, based on the demonstration that magmas are not fluid-saturated at their eruption depth and so preserve the mantle signature in terms of their volatile contents. However, in their analysis, Saal et al.2 consider only fluid−melt equilibria, and do not take into account the homogeneous equilibria between fluid species, which, as we show here, may lead to a significant underestimation of the pressure depth of fluid saturation

    Algebraic Self-Similar Renormalization in Theory of Critical Phenomena

    Full text link
    We consider the method of self-similar renormalization for calculating critical temperatures and critical indices. A new optimized variant of the method for an effective summation of asymptotic series is suggested and illustrated by several different examples. The advantage of the method is in combining simplicity with high accuracy.Comment: 1 file, 44 pages, RevTe

    Surface critical behavior in fixed dimensions d<4d<4: Nonanalyticity of critical surface enhancement and massive field theory approach

    Full text link
    The critical behavior of semi-infinite systems in fixed dimensions d<4d<4 is investigated theoretically. The appropriate extension of Parisi's massive field theory approach is presented.Two-loop calculations and subsequent Pad\'e-Borel analyses of surface critical exponents of the special and ordinary phase transitions yield estimates in reasonable agreement with recent Monte Carlo results. This includes the crossover exponent Φ(d=3)\Phi (d=3), for which we obtain the values Φ(n=1)≃0.54\Phi (n=1)\simeq 0.54 and Φ(n=0)≃0.52\Phi (n=0)\simeq 0.52, considerably lower than the previous ϵ\epsilon-expansion estimates.Comment: Latex with Revtex-Stylefiles, 4 page

    A Monte Carlo study of leading order scaling corrections of phi^4 theory on a three dimensional lattice

    Full text link
    We present a Monte Carlo study of the one-component ϕ4\phi^4 model on the cubic lattice in three dimensions. Leading order scaling corrections are studied using the finite size scaling method. We compute the corrections to scaling exponent ω\omega with high precision. We determine the value of the coupling λ\lambda at which leading order corrections to scaling vanish. Using this result we obtain estimates for critical exponents that are more precise than those obtained with field theoretic methods.Comment: 20 pages, two figures; numbers cited from ref. 23 corrected, few typos correcte

    Monte Carlo Renormalization of the 3-D Ising model: Analyticity and Convergence

    Full text link
    We review the assumptions on which the Monte Carlo renormalization technique is based, in particular the analyticity of the block spin transformations. On this basis, we select an optimized Kadanoff blocking rule in combination with the simulation of a d=3 Ising model with reduced corrections to scaling. This is achieved by including interactions with second and third neighbors. As a consequence of the improved analyticity properties, this Monte Carlo renormalization method yields a fast convergence and a high accuracy. The results for the critical exponents are y_H=2.481(1) and y_T=1.585(3).Comment: RevTeX, 4 PostScript file
    • …
    corecore