7 research outputs found

    Influence of modelling disorder on Hirshfeld atom refinement results of an organo-gold(I) compound.

    Get PDF
    Details of the validation of disorder modelling with Hirshfeld atom refinement (HAR) for a previously investigated organo-gold(I) compound are presented here. The impact of refining disorder on HAR results is discussed using an analysis of the differences of dynamic structure factors. These dynamic structure factor differences are calculated from thermally smeared quantum mechanical electron densities based on wavefunctions that include or exclude electron correlation and relativistic effects. When disorder is modelled, the electron densities stem from a weighted superposition of two (or more) different conformers. Here this is shown to impact the relative importance of electron correlation and relativistic effect estimates expressed by the structure factor magnitudes. The role of disorder modelling is also compared with the effect of the treatment of hydrogen anisotropic displacement parameter (ADP) values and atomic anharmonicity of the gold atom. The analysis of ADP values of gold and disordered carbon atoms showed that the effect of disorder significantly altered carbon ADP values and did not influence those of the gold atom

    Unprecedented reaction course of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione with 3-M excess of ethylene oxide

    Get PDF
    The reaction of 1-phenyl-2H,6H-imidazo[1,5-c]quinazolino-3,5-dione (4) with 3-molar excess ethylene oxide was described. The resulting product was characterized by spectroscopic techniques ( 1 H-, 13 C-NMR, IR, and UV) and by X-ray crystallography. It was expected to produce a product of the subsequent reaction in the hydroxyl groups of the initially formed diol—1-phenyl-2,6-bis(2-hydroxyethyl)imidazo[1,5-c]quinazoline-3,5-dione (7) with ethylene oxide (5). However, crystallographic studies revealed that the proper and only product of the reaction is 3-{2-[1,3-bis(2-hydroxyethyl)-2-oxo-4-phenylimidazolidin-5-yl]phenyl}-1,3-oxazolidin-2-one (8). This product was formed by quinazoline ring opening which occurred in the presence of more than 2-molar excess ethylene oxide. In the work, the exemplary reaction mechanism explaining the formation of the unexpected product was proposed. In order to understand the reasons of quinazoline ring opening, the quantum mechanical modeling was performed. Energy of transition states indicated that the reaction with the third mole of ethylene oxide was controlled by kinetics. © 2019, The Author(s).Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw [G49-12]; European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007-2013; DS budget; internal grant of TBU in Zlin [IGA/FT/2017/005

    Crystal structure, interaction energies and experimental electron density of the popular drug ketoprophen

    No full text
    The crystal and molecular structure of the pure (S)-enantiomer of the popular analgesic and anti-inflammatory drug ketoprophen (α-ket) is reported. A detailed aspherical charge-density model based on high-resolution X-ray diffraction data has been refined, yielding a high-precision geometric description and classification of the O—H...O interactions as medium strength hydrogen bonds. The crystal structure of the racemic form of ketoprophen (β-ket) was also redetermined at 100 K, at 0.5 Å resolution. A previously unreported disorder (10% occupancy) was discovered. In contrast to the racemic β-ket case, the (S)-enantiomer crystallizes with two independent molecules in the asymmetric unit with two distinct conformations. The major difference between the β-ket and α-ket crystal forms lies in the formation of distinct hydrogen-bonded motifs: a closed ring motif in β-ket versus infinite chains of hydrogen bonds in the chiral α-ket structure. However, the overall crystal packing of both forms is surprisingly similar, with close-packed layers of antiparallel-oriented benzophenone moieties bound by C—H...π interactions. Notably, the most important stabilizing term in the total lattice energies in both instances proved to be the dispersion related to these interactions. Both forms of the title compound (α- and β-ket) were additionally characterized by differential scanning calorimetry and thermogravimetric analysis

    Relativistic Hirshfeld atom refinement of an organo-gold(I) compound

    Get PDF
    The main goal of this study is the validation of relativistic Hirshfeld atom refinement (HAR) as implemented in Tonto for high-resolution X-ray diffraction datasets of an organo-gold(I) compound. The influence of the relativistic effects on statistical parameters, geometries and electron density properties was analyzed and compared with the influence of electron correlation and anharmonic atomic motions. Recent work in this field has indicated the importance of relativistic effects in the static electron density distribution of organo-mercury compounds. This study confirms that differences in electron density due to relativistic effects are also of significant magnitude for organo-gold compounds. Relativistic effects dominate not only the core region of the gold atom, but also influence the electron density in the valence and bonding region, which has measurable consequences for the HAR refinement model parameters. To study the effects of anharmonic motion on the electron density distribution, dynamic electron density difference maps were constructed. Unlike relativistic and electron correlation effects, the effects of anharmonic nuclear motion are mostly observed in the core area of the gold atom

    New diols with imidazoquinazoline ring

    No full text
    The objective of these studies was to synthesize and characterize new diols with an imidazoquinazoline ring. New diols were obtained in reactions of 2,6-bis-(ethoxycarbonylmethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione with excess of ethylene glycol or in reaction of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione with 2-M excess of ethylene oxide. The products were isolated at high yield and characterized by instrumental methods (IR, 1H- and 13C-NMR, MS-ESI, UV, TGA). The structure of 2,6-bis(2-hydroxyethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione (BEFIQ) was also investigated by single-crystal X-ray diffraction. BEFIQ crystallizes in the monoclinic P21/n space group with two molecules in the asymmetric unit of the crystal lattice. The nature of the packing of molecules in the crystal lattice of BEFIQ was investigated by Hirshfeld surface analysis. The described methods enable the synthesis of new diols with an imidazoquinazoline ring. The new diols are quite soluble in typical organic solvents. Therefore, they can be used as raw materials for the synthesis of thermally stable polymers, and they can also have biological activity. © 2017 Elsevier B.V.ERDF, European Regional Development FundEuropean Union from European Regional Development Fund under Operational Programme Innovative Economy; DS budget; DS budget of Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology; TBU in Zlin [IGA/FT/2017/005

    Experimental and Computational Studies on Structure and Energetic Properties of Halogen Derivatives of 2-Deoxy-D-Glucose

    No full text
    The results of structural studies on a series of halogen-substituted derivatives of 2-deoxy-D-glucose (2-DG) are reported. 2-DG is an inhibitor of glycolysis, a metabolic pathway crucial for cancer cell proliferation and viral replication in host cells, and interferes with D-glucose and D-mannose metabolism. Thus, 2-DG and its derivatives are considered as potential anticancer and antiviral drugs. X-ray crystallography shows that a halogen atom present at the C2 position in the pyranose ring does not significantly affect its conformation. However, it has a noticeable effect on the crystal structure. Fluorine derivatives exist as a dense 3D framework isostructural with the parent compound, while Cl- and I-derivatives form layered structures. Analysis of the Hirshfeld surface shows formation of hydrogen bonds involving the halogen, yet no indication for the existence of halogen bonds. Density functional theory (DFT) periodic calculations of cohesive and interaction energies (at the B3LYP level of theory) have supported these findings. NMR studies in the solution show that most of the compounds do not display significant differences in their anomeric equilibria, and that pyranose ring puckering is similar to the crystalline state. For 2-deoxy-2-fluoro-D-glucose (2-FG), electrostatic interaction energies between the ligand and protein for several existing structures of pyranose 2-oxidase were also computed. These interactions mostly involve acidic residues of the protein; single amino-acid substitutions have only a minor impact on binding. These studies provide a better understanding of the structural chemistry of halogen-substituted carbohydrates as well as their intermolecular interactions with proteins determining their distinct biological activity
    corecore