200 research outputs found

    Matrix dynamics of fuzzy spheres

    Get PDF
    We study the dynamics of fuzzy two-spheres in a matrix model which represents string theory in the presence of RR flux. We analyze the stability of known static solutions of such a theory which contain commuting matrices and SU(2) representations. We find that irreducible as well as reducible representations are stable. Since the latter are of higher energy, this stability poses a puzzle. We resolve this puzzle by noting that reducible representations have marginal directions corresponding to non-spherical deformations. We obtain new static solutions by turning on these marginal deformations. These solutions now have instability or tachyonic directions. We discuss condensation of these tachyons which correspond to classical trajectories interpolating from multiple, small fuzzy spheres to a single, large sphere. We briefly discuss spatially independent configurations of a D3/D5 system described by the same matrix model which now possesses a supergravity dual.Comment: 26 pages, 3 figures, uses JHEP.cls; (v2) references adde

    Supertubes

    Get PDF
    It is shown that a IIA superstring carrying D0-brane charge can be `blown-up', in a {\it Minkowski vacuum} background, to a (1/4)-supersymmetric tubular D2-brane, supported against collapse by the angular momentum generated by crossed electric and magnetic Born-Infeld fields. This `supertube' can be viewed as a worldvolume realization of the sigma-model Q-lump.Comment: Revision includes mention of some configurations dual to the supertub

    Writhe of center vortices and topological charge -- an explicit example

    Full text link
    The manner in which continuum center vortices generate topological charge density is elucidated using an explicit example. The example vortex world-surface contains one lone self-intersection point, which contributes a quantum 1/2 to the topological charge. On the other hand, the surface in question is orientable and thus must carry global topological charge zero due to general arguments. Therefore, there must be another contribution, coming from vortex writhe. The latter is known for the lattice analogue of the example vortex considered, where it is quite intuitive. For the vortex in the continuum, including the limit of an infinitely thin vortex, a careful analysis is performed and it is shown how the contribution to the topological charge induced by writhe is distributed over the vortex surface.Comment: 33 latex pages, 10 figures incorporating 14 ps files. Furthermore, the time evolution of the vortex line discussed in this work can be viewed as a gif movie, available for download by following the PostScript link below -- watch for the cute feature at the self-intersection poin

    D-branes on a Deformation of SU(2)

    Get PDF
    We discuss D-branes on a line of conformal field theories connected by an exact marginal deformation. The line contains an SU(2) WZW model and two mutually T-dual SU(2)/U(1) cosets times a free boson. We find the D-branes preserving a U(1) isometry, an F-flux quantization condition and conformal invariance. Away from the SU(2) point a U(1) times U(1) symmetry is broken to U(1) times Z_k, i.e. continuous rotations of branes are accompanied by rotations along the branes. Requiring decoupling of the cosets from the free boson at the endpoints of the deformation breaks the continuous rotation of branes to Z_k. At the SU(2) point the full U(1) times U(1) symmetry is restored. This suggests the occurrence of phase transitions for branes at angles in the coset model, at a semiclassical level. We also discuss briefly the orientifold planes along the deformation line.Comment: 19 pages, latex, 5 figures, references adde

    5d Black Hole as Emergent Geometry of Weakly Interacting 4d Hot Yang-Mills Gas

    Full text link
    We demonstrate five-dimensional anti-de Sitter black hole emerges as dual geometry holographic to weakly interacting N=4 superconformal Yang-Mills theory. We first note that an ideal probe of the dual geometry is the Yang-Mills instanton, probing point by point in spacetime. We then study instanton moduli space at finite temperature by adopting Hitchin's proposal that geometry of the moduli space is definable by Fisher-Rao "information geometry". In Yang-Mills theory, the information metric is measured by a novel class of gauge-invariant, nonlocal operators in the instanton sector. We show that the moduli space metric exhibits (1) asymptotically anti-de Sitter, (2) horizon at radial distance set by the Yang-Mills temperature, and (3) after Wick rotation of the moduli space to the Lorentzian signature, a singularity at the origin. We argue that the dual geometry emerges even for rank of gauge groups of order unity and for weak `t Hooft coupling.Comment: Latex, 3 .eps figures; v2. typos corrected + minor change

    Loop Operators and the Kondo Problem

    Full text link
    We analyse the renormalisation group flow for D-branes in WZW models from the point of view of the boundary states. To this end we consider loop operators that perturb the boundary states away from their ultraviolet fixed points, and show how to regularise and renormalise them consistently with the global symmetries of the problem. We pay particular attention to the chiral operators that only depend on left-moving currents, and which are attractors of the renormalisation group flow. We check (to lowest non-trivial order in the coupling constant) that at their stable infrared fixed points these operators measure quantum monodromies, in agreement with previous semiclassical studies. Our results help clarify the general relationship between boundary transfer matrices and defect lines, which parallels the relation between (non-commutative) fields on (a stack of) D-branes and their push-forwards to the target-space bulk.Comment: 22 pages, 2 figure

    Boundary States for the Rolling D-branes in NS5 Background

    Full text link
    In this paper we construct the time dependent boundary states describing the ``rolling D-brane solutions'' in the NS5 background discovered recently by Kutasov by means of the classical DBI analysis. We first survey some aspects of non-compact branes in the NS5 background based on known boundary states in the N=2 Liouville theory. We consider two types of non-compact branes, one of which is BPS and the other is non-BPS but stable. Then we clarify how to Wick-rotate the non-BPS one appropriately. We show that the Wick-rotated boundary state realizes the correct trajectory of rolling D-brane in the classical limit, and leads to well behaved spectral densities of open strings due to the existence of non-trivial damping factors of energy. We further study the cylinder amplitudes and the emission rates of massive closed string modes.Comment: 25 pages, 2 figures, v2: typos corrected, reference added, v3: emission rates of closed strings correcte

    Entropy Function for Non-extremal D1D5 and D2D6NS5-branes

    Full text link
    We apply the entropy function formalism to non-extremal D1D5 and D2D6NS5-branes whose throat approximation is given by the Schwarzschild black hole in AdS_3\times S^3\times T^4 and AdS_3\times S^2\times S^1\times T^4, respectively. We find the Bekenstein-Hawking entropy and the (alpha')^3R^4 corrections from the value of the entropy function at its saddle point. While the higher derivative terms have no effect on the temperature, they decrease the value of the entropy.Comment: 17 Pages, Latex file; Minor additions, version published in JHE

    Holographic Kondo Model in Various Dimensions

    Full text link
    We study the addition of localised impurities to U(N) Supersymmetric Yang-Mills theories in (p+1)-dimensions by using the gauge/gravity correspondence. From the gravity side, the impurities are introduced by considering probe D(8-p)-branes extendingalong the time and radial directions and wrapping an (7-p)-dimensional submanifold of the internal (8-p)-sphere, so that the degrees of freedom are point-like from the gauge theory perspective. We analyse both the configuration in which the branes generate straight flux tubes -corresponding to actual single impurities - and the one in which connected flux tubes are created- corresponding to dimers. We discuss the thermodynamics of both the configurations and the related phase transition. In particular, the specific heat of the straight flux-tube configuration is negative for p<3, while it is never the case for the connected one. We study the stability of the system by looking at the impurity fluctuations. Finally, we characterise the theory by computing one- and two-point correlators of the gauge theory operators dual to the impurity fluctuations. Because of the underlying generalised conformal structure, such correlators can be expressed in terms of an effective coupling constant (which runs because of its dimensionality) and a generalised conformal dimension.Comment: 56 pages, 3 figures; v2: typos correcte
    corecore