47 research outputs found

    Rich-Club Organization in Effective Connectivity among Cortical Neurons.

    Get PDF
    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a “rich club.” We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory.SIGNIFICANCE STATEMENT Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several hundred at a time) with such high temporal resolution (so we can know the direction of communication between neurons) for mapping networks within cortex. We found that information was not transferred equally through all neurons. Instead, ∼70% of the information passed through only 20% of the neurons. Network models suggest that this highly concentrated pattern of information transfer would be both efficient and robust to damage. Therefore, this work may help in understanding how the cortex processes information and responds to neurodegenerative diseases

    A wireless multi-channel neural amplifier for freely moving animals

    Get PDF
    Conventional neural recording systems restrict behavioral experiments to a flat indoor environment compatible with the cable that tethers the subject to recording instruments. To overcome these constraints, we developed a wireless multi-channel system for recording neural signals from rats. The device takes up to 64 voltage signals from implanted electrodes, samples each at 20 kHz, time-division multiplexes them into one signal and transmits that output by radio frequency to a receiver up to 60 m away. The system introduces <4 μV of electrode-referred noise, comparable to wired recording systems, and outperforms existing rodent telemetry systems in channel count, weight and transmission range. This allows effective recording of brain signals in freely behaving animals. We report measurements of neural population activity taken outdoors and in tunnels. Neural firing in the visual cortex was relatively sparse, correlated even across large distances and was strongly influenced by locomotor activity

    Multiplex networks of cortical and hippocampal neurons revealed at different timescales.

    No full text
    Recent studies have emphasized the importance of multiplex networks--interdependent networks with shared nodes and different types of connections--in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy--an information theoretic quantity that can be used to measure linear and nonlinear interactions--to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons ("hubs") were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons

    Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses

    No full text
    Electrical stimulation of retinal neurons with an advanced retinal prosthesis may eventually provide high-resolution artificial vision to the blind. However, the success of future prostheses depends on the ability to activate the major parallel visual pathways of the human visual system. Electrical stimulation of the five numerically dominant retinal ganglion cell types was investigated by simultaneous stimulation and recording in isolated peripheral primate (Macaca sp.) retina using multi-electrode arrays. ON and OFF midget, ON and OFF parasol, and small bistratified ganglion cells could all be activated directly to fire a single spike with submillisecond latency using brief pulses of current within established safety limits. Thresholds for electrical stimulation were similar in all five cell types. In many cases, a single cell could be specifically activated without activating neighboring cells of the same type or other types. These findings support the feasibility of direct electrical stimulation of the major visual pathways at or near their native spatial and temporal resolution
    corecore