8 research outputs found

    A Facile Synthesis and Characterization of Highly Crystalline Submicro-Sized BiFeO3

    No full text
    In this study, a highly crystalline bismuth ferrite (BFO) powder was synthesized using a novel, very simple, and cost-effective synthetic approach. It was demonstrated that the optimal annealing temperature for the preparation of highly-pure BFO is 650 °C. At lower or higher temperatures, the formation of neighboring crystal phases was observed. The thermal behavior of BFO precursor gel was investigated by thermogravimetric and differential scanning calorimetry (TG-DSC) measurements. X-ray diffraction (XRD) analysis and Mössbauer spectroscopy were employed for the investigation of structural properties. Scanning electron microscopy (SEM) was used to evaluate morphological features of the synthesized materials. The obtained powders were also characterized by magnetization measurements, which showed antiferromagnetic behavior of BFO powders

    Photonic glass ceramics based on SnO2 nanocrystals: advances and perspectives

    Get PDF
    Trabajo presentado al XVII Optical Components and Materials, celewbrado en San Francisco, California (USA) del 1 al 6 de febrero de 2020.SnO2-based glass-ceramics activated by rare earth ions have been extensively investigated because of the need to develop reliable fabrication protocols and clarify some interesting optical, structural, and spectroscopic features of the system. There is one important weakness in glass photonics when the rare earth ions are employed as luminescent sources. This is the low absorption cross section of the electronic states of the rare earth ions. A sensitizer is therefore requested. In the last years, we demonstrated that SiO2-SnO2 glass ceramics, presenting a strong absorption cross section in the UV range due to the SnO2 nanocrystal, are effective rare earth ions sensitizers. Another interesting property of the SiO2-SnO2 system is its photorefractivity. The high photorefractivity of sol-gel-derived SnO2-SiO2 glass-ceramic waveguides has been demonstrated in several papers published by our consortium. It has been shown that the UV irradiation induces refractive index change allowing the direct writing of both channel waveguides and Bragg gratings. The results presented in this communication not only demonstrate the viability and outstanding properties of the SiO2- SnO2 glass-ceramics for photonic applications but also put the basis for the fabrication of solid state and integrated lasers. The next steps of the research are the fabrication of the channels and mirrors exploiting the photorefractivity as well as to draw glass ceramic fiber, checking the lasing action and corresponding functional characteristics. Finally, it is worth noting that the dynamic of the energy transfer from the nanocrystals to the rare earth ions is still an exciting open question.This research is performed in the framework of the projects ERANet-LAC “RECOLA” (2017-2019), Centro Fermi MiFo (2017–2020) and NaWaGui (ANR-18-MRS1-0014). WB and MF acknowledge the support of CNR-STM - Short Term Mobility program 2019-2020.Peer reviewe

    Mechanisms of Tenebrescence and Persistent Luminescence in Synthetic Hackmanite Na<sub>8</sub>Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>(Cl,S)<sub>2</sub>

    No full text
    Synthetic hackmanites, Na<sub>8</sub>Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>(Cl,S)<sub>2</sub>, showing efficient purple tenebrescence and blue/white persistent luminescence were studied using different spectroscopic techniques to obtain a quantified view on the storage and release of optical energy in these materials. The persistent luminescence emitter was identified as impurity Ti<sup>3+</sup> originating from the precursor materials used in the synthesis, and the energy storage for persistent luminescence was postulated to take place in oxygen vacancies within the aluminosilicate framework. Tenebrescence, on the other hand, was observed to function within the Na<sub>4</sub>(Cl,S) entities located in the cavities of the aluminosilicate framework. The mechanism of persistent luminescence and tenebrescence in hackmanite is presented for the first time

    Photon management in SiO2-SnO2:Yb3+ hybrid 1D microcavity

    No full text
    In this work, we present preliminary results of the fabrication and characterization of 1D Fabry–Perot microcavity realized on Yb3+ activated SiO2-SnO2 glass-ceramic (SiO2-SnO2:Yb3+). A radiofrequency-sputtering/sol-gel hybrid deposition process was developed for the microcavity fabrication. The fabrication included (i) radiofrequency-sputtering (rf-sputtering) of SiO2/HfO2 Bragg reflectors and (ii) sol-gel deposition of the active SiO2-SnO2:Yb3+ defect layer. A good control and enhancement of the spontaneous emission for Yb3+ luminescence sensitized by SnO2 nanocrystals was achieved exploiting microcavity properties. Such results are valuable for development of low-threshold rare-earth-based coherent light sources, pumped by broadband UV diodes

    Yb 3+

    No full text
    cited By 10International audienceWe show the approach in the structural and spectroscopic analysis of Yb3+-doped YAG nanoceramics prepared using the low temperature-high pressure sintering technique (LTHP) by conjugation of both TEM-EDX and optical techniques. Pressure sintering dependences of absorption, emission, and decays are analyzed and interpreted. The sample pressurized at 8 GPa for sintering is characterized by the highest transparency and confirms the Y3Al 5O12 garnet structure of the grains of ∼21 nm average size. Yb3+ ion distribution has been analyzed by both TEM-EDX evaluation in grains and grain boundaries and spectroscopy of Yb3+ pairs of small population from the co-operative luminescence phenomenon. EDX analysis at the TEM scale provides unambiguous results on a clear tendency of almost uniform Yb3+ distribution. An important new observation has been made at 4 K and room temperature with the 2F7/2 → 2F5/2 0-phonon absorption line located at 975.7 nm, in addition of the 0-phonon line of the YAG structure of grains at 968 nm similar to that of bulky YAG single crystals. We have discussed the origin of this new 0-phonon line relaxing only by nonradiative transitions and conclude that this line might be assigned to Yb3+ distorted sites on the grain surfaces. © 2014 American Chemical Society
    corecore