80 research outputs found

    Phosphonates: Their Natural Occurrence and Physiological Role

    Get PDF
    The first natural compound containing carbon-to-phosphorus bond—ciliatine was discovered 60 years ago, and for four decades, phosphonates were considered simply as a biological curiosity. Finding the importance of these compounds in biogeochemical phosphorus cycling, their role in methane production, as well as discovery of numerous phosphonates and phosphonopeptides of promising antibacterial and antifungal activities has stimulated the development of studies on this class of compounds, especially on their metabolism and biochemistry. These studies are driven by the use of 31P NMR and by a clever combination of genomics and innovative chemistry by using the method of selective labeling of metabolites. These studies revealed unusual and interesting chemistry of these compounds

    Inhibitors of Proteinases as Potential Anti-Cancer Agents

    Get PDF

    Comparative study of fungal cell disruption—scope and limitations of the methods

    Get PDF
    Simple and effective protocols of cell wall disruption were elaborated for tested fungal strains: Penicillium citrinum, Aspergillus fumigatus, Rhodotorula gracilis. Several techniques of cell wall disintegration were studied, including ultrasound disintegration, homogenization in bead mill, application of chemicals of various types, and osmotic shock. The release of proteins from fungal cells and the activity of a cytosolic enzyme, glucose-6-phosphate dehydrogenase, in the crude extracts were assayed to determine and compare the efficacy of each method. The presented studies allowed adjusting the particular method to a particular strain. The mechanical methods of disintegration appeared to be the most effective for the disintegration of yeast, R. gracilis, and filamentous fungi, A. fumigatus and P. citrinum. Ultrasonication and bead milling led to obtaining fungal cell-free extracts containing high concentrations of soluble proteins and active glucose-6-phosphate dehydrogenase systems

    The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts

    Get PDF
    The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts. June 4-7, 2019, Szczyrk, Polan

    Recent advances in design of new urease inhibitors: A review

    No full text
    Urease is a nickel-dependent metalloenzyme found in plants, some bacteria, and fungi. Bacterial enzyme is of special importance since it has been demonstrated as a potent virulence factor for some species. Especially it is central to Helicobacter pylori metabolism and virulence being necessary for its colonization of the gastric mucosa, and is a potent immunogen that elicits a vigorous immune response. Therefore, it is not surprising that efforts to design, synthesize and evaluate of new inhibitors of urease are and active field of medicinal chemistry. In this paper recent advances on this field are reviewed. Keywords: Urease, Inhibitor design, Molecular modeling, Inhibitor-enzyme interaction

    Synthetic Procedures Leading towards Aminobisphosphonates

    No full text
    Growing interest in the biological activity of aminobisphosphonates has stimulated the development of methods for their synthesis. Although several general procedures were previously elaborated to reach this goal, aminobisphosphonate chemistry is still developing quite substantially. Thus, innovative modifications of the existing commonly used reactions, as well as development of new procedures, are presented in this review, concentrating on recent achievements. Additionally, selected examples of aminobisphosphonate derivatization illustrate their usefulness for obtaining new diagnostic and therapeutic agents
    corecore