16 research outputs found

    Plant recognition, detection, and counting with deep learning

    Get PDF
    In agricultural and farm management, plant recognition, plant detection, and plant counting systems are crucial. We can apply these tasks to several applications, for example, plant disease detection, weed detection, fruit harvest system, and plant species identification. Plants can be identified by looking at their most discriminating parts, such as a leaf, fruit, flower, bark, and the overall plant, by considering attributes as shape, size, or color. However, the identification of plant species from field observation can be complicated, time-consuming, and requires specialized expertise. Computer vision and machine-learning techniques have become ubiquitous and are invaluable to overcome problems with plant recognition in research. Although these techniques have been of great help, image-based plant recognition is still a challenge. There are several obstacles, such as considerable species diversity, intra-class dissimilarity, inter-class similarity, and blurred resource images. Recently, the emerging of deep learning has brought substantial advances in image classification. Deep learning architectures can learn from images and notably increase their predictive accuracy. This thesis provides various techniques, including data augmentation and classification schemes, to improve plant recognition, plant detection, and plant counting system

    One-vs-One classification for deep neural networks

    Get PDF
    For performing multi-class classification, deep neural networks almost always employ a One-vs-All (OvA) classification scheme with as many output units as there are classes in a dataset. The problem of this approach is that each output unit requires a complex decision boundary to separate examples from one class from all other examples. In this paper, we propose a novel One-vs-One (OvO) classification scheme for deep neural networks that trains each output unit to distinguish between a specific pair of classes. This method increases the number of output units compared to the One-vs-All classification scheme but makes learning correct decision boundaries much easier. In addition to changing the neural network architecture, we changed the loss function, created a code matrix to transform the one-hot encoding to a new label encoding, and changed the method for classifying examples. To analyze the advantages of the proposed method, we compared the One-vs-One and One-vs-All classification methods on three plant recognition datasets (including a novel dataset that we created) and a dataset with images of different monkey species using two deep architectures. The two deep convolutional neural network (CNN) architectures, Inception-V3 and ResNet-50, are trained from scratch or pre-trained weights. The results show that the One-vs-One classification method outperforms the One-vs-All method on all four datasets when training the CNNs from scratch. However, when using the two classification schemes for fine-tuning pre-trained CNNs, the One-vs-All method leads to the best performances, which is presumably because the CNNs had been pre-trained using the One-vs-All scheme

    Comparing Local Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for Plant Recognition

    Get PDF
    The use of machine learning and computer vision methods for recognizing different plants from images has attracted lots of attention from the community. This paper aims at comparing local feature descriptors and bags of visual words with different classifiers to deep convolutional neural networks (CNNs) on three plant datasets; AgrilPlant, LeafSnap, and Folio. To achieve this, we study the use of both scratch and fine-tuned versions of the GoogleNet and the AlexNet architectures and compare them to a local feature descriptor with k-nearest neighbors and the bag of visual words with the histogram of oriented gradients combined with either support vector machines and multi-layer perceptrons. The results shows that the deep CNN methods outperform the hand-crafted features. The CNN techniques can also learn well on a relatively small dataset, Folio
    corecore