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I N T R O D U C T I O N

1.1 Introduction
Plant Recognition using Deep Learning

The interest in automated recognition of plant species has been signif-
icantly increasing in the research community. It has been of great im-
portance for several purposes, including farm management, botanical
research, livestock food business, and edutainment. The success of plant
recognition can be applied to several areas of application, for example
plant disease detection (Mohanty, Hughes, and Salathé, 2016; Ferentinos,
2018), weed detection (Santos Ferreira et al., 2017; Lottes et al., 2018),
and plant species identification (Goëau et al., 2013).

Plants can be identified by looking at their most discriminating parts,
such as a leaf, fruit, flower, bark, and the overall plant, taking into account
such attributes as shape, size, or color. However, the identification of
plant species from field observation can be complicated, time-consuming,
and requires specialized expertise (Gaston and O’Neill, 2004; Wäldchen
and Mäder, 2018). Computer vision and machine-learning techniques
have become ubiquitous and are now invaluable to overcome problems
with plant recognition in research. Although these techniques have been
of great help, image-based plant recognition is still a challenge due to
several obstacles, such as a very large species diversity, intra-class dis-
similarity, inter-class similarity, blurred resource images, high variance in
illumination of images, and the limited availability of labeled datasets.

1



2 I N T R O D U C T I O N

In machine learning, image-based plant recognition is a supervised
classification problem and consists of two phases: the training phase and
the testing phase. The training phase can be divided into image acquisition,
image preprocessing, feature extraction, and classification (Rzanny et
al., 2017; Wäldchen et al., 2018). Figure 1 shows a pipeline of a plant
recognition process. The data acquisition step requires the collection of
image data and the names of the plants (ground-truth values) associated
with them, which may require expertise for some complex plants. The
image preprocessing step can include a smooth or clean background of
the images or some data-augmentation techniques such as cropping or
rotating. For the feature extraction and classification steps, earlier research
focused on various hand-crafted feature extraction techniques combined
with various classifiers. Neto et al. (2006) successfully used the Elliptic
Fourier shape feature method to identify crop and weed species. Nilsback
and Zisserman (2008) classified various flowers by using low-level features,
including color, the Histogram of Gradient Orientations (HOG), and Scale-
Invariant Feature Transform (SIFT), and combining them with a support
vector machine (SVM). In the testing phase, the trained model is used to
predict the class of an unseen image.

Image acquisition Preprocessing Feature extraction Classification

Model

Training images

Predicted 
class

Training images

Test image

Classifier Training 
phase

Testing
phase

Figure 1: Image-based plant recognition pipeline.

Recently, the emerging of deep learning has changed the feature ex-
traction process and frequently outperforms the previous classical feature
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extractors in several research areas. As a consequence of high-performance
computing, neural networks with millions of parameters can be trained
rapidly and effectively. Several researchers trained convolutional neural
networks (CNNs) for recognizing tasks on different plant species. Sun et al.
(2017) developed a 26-layer deep learning model for large-scale plant clas-
sification. The work of (Dyrmann, Karstoft, and Midtiby, 2016) used CNNs
on color images of weed and crop species. Several works modified the
on-the-shelf deep learning architectures for the training process. The work
of (Mohanty, Hughes, and Salathé, 2016) trained AlexNet (Krizhevsky,
Sutskever, and Hinton, 2012) and GoogleNet (Szegedy et al., 2015) on
either sick or healthy plants from the PlantVillage dataset and achieved
impressive accuracies. Another interesting crowdsourcing application is
Pl@ntNet (Goëau et al., 2013), which shares and retrieves plant species
by training CNNs on various parts of the plant, such as flowers, leaves,
barks, or fruits.

Plant Detection and Plant Counting

In agricultural and orchard management, plant detection and counting
systems are also crucial. Having reliable and accurate detection/counting
systems can help organize and manage human and energy resources,
resulting in benefits for sustainability, conservation, and ecology. The work
of (Bargoti and Underwood, 2017) adapted transfer learning of the state-
of-the-art object detection framework, Faster R-CNN (Ren et al., 2015),
to detect mangoes, almonds, and apples from color and near-infrared
images.

The results from the plant detection task can also be applied to the plant
counting task. In general, there are two approaches to counting tasks:
detection-based counting and regression-based counting. In addition to
obstacles similar to those faced in plant classification, image-based plant
counting has to deal with other problems, including the overlapping of
plants, the occlusion of plants in the images, and the different perspective
or different sizes of plants in the images. The work of (Rahnemoonfar and
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Sheppard, 2017) simulated CNN for estimating the number of tomatoes in
the images by creating synthetic images to obtain more training examples.
We intend to improve counting accuracy by adding real plant objects to
the training images.

1.2 Research Objectives and Questions
The main target of this thesis is to investigate various techniques, including
data augmentation and classification, to improve plant recognition, plant
detection, and plant counting. The following objectives and research
questions are developed.

Objective 1: Comparing the traditional feature extractors to the deep
learning techniques.
Question 1: Does deep learning outperform hand-crafted features and
local descriptors in the plant domain? Can we modify the on-the-shelf
CNN architectures so that they achieve better performance on plant classi-
fication? Do CNN architectures also work well on small datasets?

We start by building a baseline for plant recognition systems using deep
learning architectures. We want to examine whether deep learning ap-
proaches overcome the existing hand-crafted feature extractors and some
classification methods. Furthermore, we consider using a concise version of
CNN architectures with a smaller number of neurons in the fully-connected
layers for training. We want to examine whether they still work effectively
with a better accuracy rate and less training time on small plant datasets.

Objective 2: Determine the effectiveness of the combination of data-
augmentation (DA) techniques for plant classification problems.
Question 2: Does DA help to improve classification performance? If a
single DA technique improves recognition accuracy, does the combination
of DA techniques work more effectively?

Data augmentation helps to increase the number of training images in
the training set. The earlier studies showed that applying DA on training
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images often boosts classification performance. We propose several com-
binations of DA techniques and apply them to the training images of the
plant datasets.

Objective 3: Develop a DA technique that helps to improve the fruit
counting performance.
Question 3: Can DA techniques enhance the performance of the fruit
counting task?

Besides the classification problem, we want to examine whether the DA
technique can improve the fruit-counting system’s performance. We pro-
pose a fruit-data-augmentation (FDA) technique and apply it to the train-
ing set of a novel fruit dataset. We then develop two fruit-counting ap-
proaches: regression-based counting, and detection-based counting, and
train them on both the original training set and the augmented train-
ing set. For these two approaches, we evaluate the benefit of using FDA
by comparing the performance of the models obtained from either the
original or the augmented set.

Objective 4: Combine CNNs with One-vs-One (OvO) classification to
enhance recognition accuracy.
Question 4: Do CNNs combined with the One-vs-One classification scheme
outperform the traditional One-vs-All (OvA) classification scheme?

We propose using a One-vs-One classification scheme for a deep neural
network for plant classification problems. We modify the neural network
architecture, create a code matrix for encoding the novel labels, change
the loss function, and change the classification method. We analyze the
advantages of using OvO for multi-class classification problems. We further
evaluate and compare the performance of the OvO and OvA classification
schemes by training two CNN architectures on three plant datasets.
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1.3 Thesis Overview
This thesis consists of six chapters. Each chapter introduces the main ideas
which are related to the thesis objectives and research questions. The
thesis is organized as follows:

Chapter 1- Introduction.
We list the motivations, research objectives, and research questions of

this dissertation.

Chapter 2 - Hand-crafted features and deep learning for plant classifica-
tion.

In this chapter, we compare the recognition performances of seven
classification methods on three plant datasets. These classification meth-
ods include (a) a local descriptor with k-nearest neighbors (HOG with
KNN), (b) a bag of visual words with the histogram of oriented gradients
(HOG-BOW) combined with either a support vector machines (SVM) or
multilayer perceptrons (MLP), and (c) the scratch and fine-tuned versions
of the two well-known CNN architectures (AlexNet and GoogleNet). The
results show that the fine-tuned CNN architectures outperform the local
descriptor and the HOG-BOW techniques. We use the compact versions of
AlexNet by reducing the number of neurons, resulting in excellent perfor-
mance and a remarkable improvement in computing time. Moreover, the
CNN architectures also perform well on a relatively small plant dataset.

Chapter 3- Data augmentation for plant classification.
This chapter describes the effects of six DA techniques (rotation, blur,

contrast, scaling, illumination, and projective transformation) and several
combinations of these DA methods on plant classification problems. We
train two CNN architectures (AlexNet and GoogleNet), both scratch and
fine-tuned versions, on three plant datasets. The results show that applying
DA on the training images improves classification performance, especially
when training the CNNs from scratch. Among these CNN models, the
scratch AlexNet profits the most from DA. Furthermore, the combinations
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of rotation and different illuminations or different contrasts help most for
improving classification accuracy with the scratch CNN models.

Chapter 4 - Deep learning with data augmentation for fruit counting.
This chapter proposes a Fruit-data-augmentation technique. This method

creates novel images by adding several fruits to the original training im-
ages with the same type of fruits. The FDA method helps to increase the
number of images and the number of fruits in the images. FDA is applied
to a training set of a fruit dataset. We evaluate the effectiveness of FDA by
performing two approaches for fruit counting: a holistic regression-based
approach and a detection-based approach, on the original training set and
the augmented training set. We compare the performance of the models
obtained from the original set to the models obtained from the augmented
set. For the regression-based counting approach, ResNet50 and Inception-
V3 are used. For the detection-based counting approach, Faster R-CNN
and SSD-MobileNet are trained for fruit detection and afterwards, fruit
counting. The results show that the regression-based approach profits
from the FDA technique, whereas the detection-based counting approach
does not benefit from the FDA method.

Chapter 5 - One-vs-one classification for deep neural networks.
In this chapter, we propose training deep learning architectures with a

novel One-vs-One classification scheme for dealing with classification prob-
lems. We evaluate training two CNN models (ResNet50 and Inception-V3),
both scratch and fine-tuned versions, with the OvO classification method
and compare this approach with deep learning with a One-vs-All classifi-
cation scheme. Both schemes are trained on three plant datasets and one
fine-grained monkey dataset, with different train size splits (varies from
10% to 100% of the training set) and a different subset of classes taken
from the datasets. The reason for performing training set subsampling
is to study the effectiveness of OvO classification on the relatively small
datasets. The results show that when CNN is trained from scratch, OvO
classification significantly improves classification performance compared
to the OvA classification scheme.
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Chapter 6 - Conclusion.
This chapter concludes the dissertation and discusses the achieved

objectives, provides answers to the research questions and gives directions
for future research.



2
H A N D - C R A F T E D F E AT U R E S A N D D E E P L E A R N I N G
F O R P L A N T C L A S S I F I C AT I O N

The use of machine learning and computer vision methods for recognizing
different plants from images has attracted lots of attention from the
community. This chapter aims at comparing local feature descriptors
and bags of visual words with different classifiers to deep convolutional
neural networks (CNNs) on three plant datasets: AgrilPlant (Pawara et al.,
2017b), LeafSnap (Kumar et al., 2012), and Folio (Munisami et al., 2015).
To achieve this, we study the use of both scratch and fine-tuned versions
of the GoogleNet (Szegedy et al., 2015) and the AlexNet (Krizhevsky,
Sutskever, and Hinton, 2012) architectures. We then compare them to
a local feature descriptor with k-nearest neighbors and the bag of visual
words with the histogram of oriented gradients combined with either
support vector machines or multi-layer perceptrons. The results show that
the deep CNN methods outperform the hand-crafted features. The CNN
techniques also perform well on a relatively small dataset, Folio.

9
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This chapter was published in:

Pawara, P.,Okafor, E., Surinta, O., Schomaker, L.R.B., and Wiering, M.A.
(2017). Comparing Local Descriptors and Bags of Visual Words to Deep
Convolutional Neural Networks for Plant Recognition. International Confer-
ence on Pattern Recognition Applications and Methods (ICPRAM), pages
479-486.
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2.1 Introduction
The machine learning and computer vision community aims at construct-
ing novel algorithms for object recognition and classification. Recently,
different studies focused on the application of these algorithms on plant
datasets. Plant classification is considered a challenging problem because
of the variety and the similarity of plants in nature.

Contour based technique has been key feature for plant, and especially
leaf, recognition (Guyer et al., 1986; Guyer et al., 1993; Woebbecke et al.,
1995). A number of research studied the shape features for leaf edge
patterns (Meyer, Hindman, and Laksmi, 1999; Du, Wang, and Zhang,
2007) and achieved good performance in classifying plant species.

The follow-up approaches to plant classification have considered using
several local descriptors. The work of (Nilsback and Zisserman, 2008),
used a joint learning approach of multiple kernels of local feature de-
scriptors, including the histogram of oriented gradients (HOG) and the
Scale-invariant feature transform (SIFT), a color histogram with a support
vector machine (SVM) classifier for the classification of a 103 flower cate-
gory dataset. The study showed that the classification performance could
be improved by combining multiple features in a suitable kernel frame-
work. An extension of the study of local feature descriptors with the use of
the HOG-based approach (Xiao et al., 2010) for leaf classification showed
superior performance over inner-distance shape context (IDSC) features
on the Swedish leaf and ICL datasets. In (Latte et al., 2015), the authors
worked on crop field recognition using the gray level co-occurrence matrix
(GLCM) and various color features with artificial neural networks (ANNs).
The performance was significantly increased when combining both types
of features.

Other studies have focused on the use of segmentation and morphologi-
cal based methods for recognizing plants using leaf datasets. For instance,
Markov random field segmentation (Nilsback and Zisserman, 2010), which
is optimized by using graph cut, has been used on the 13 classes of flowers.
The study in (Munisami et al., 2015) combined several features of convex
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hull, morphological, distance map, and color histogram with k-nearest
neighbors (KNN) to classify different kinds of leaves and provided compa-
rable accuracies with less computational time. Previous research in (Wang
et al., 2014) proposed the combination of texture feature (intersected
cortical model), and shape features (center distance sequence) with an
SVM for classification of leaf images. Furthermore, on the use of segmenta-
tion based methods, (Zhao et al., 2015) showed that using learned shape
patterns with independent inner-distance shape context (I-IDSC) features
can be adopted for classification of both local and global information from
leaves. The authors suggested that recognizing leaves by pattern counting
approach is more effective than by matching their shape features.

Recently, attention has been shifted to the use of deep convolutional neu-
ral networks (CNNs) for plant classification. The work of (Lee et al., 2015),
presented a leaf-based plant classification using CNNs to learn the dis-
criminative features automatically. The authors in (Grinblat et al., 2016),
employed a 3-layer CNN for assessing the classification performance on
three different legume species, and they emphasized the relevance of vein
patterns. The works in (Mohanty, Hughes, and Salathé, 2016; Sladojevic
et al., 2016) used the deep CNN architectures to work on plant disease de-
tection by focusing on leaf image classification. In (Mohanty, Hughes, and
Salathé, 2016), the authors compared the performance of two CNN archi-
tectures: AlexNet and GoogleNet, with different sizes of training and test
sets. The authors also worked on three image type choices: color, grayscale,
and segmented leaf images. The results showed that the GoogleNet archi-
tectures steadily outperform AlexNet. Additionally, with the train-test set
distribution of 80%-20%, the learning methods obtained the best results.
In this study, we compare the performance of local descriptors and the
bag of visual words with different classifiers to deep CNN approaches on
three datasets: a novel plant dataset (AgrilPlant) and two already existing
datasets.

Contributions: In this chapter, we compare seven different techniques
and assess their performance for recognizing plants from images using
three plant datasets; AgrilPlant, LeafSnap, and Folio. We created a novel
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dataset, AgrilPlant, which consists of 10 classes of agriculture plants. For
the comparison study, we make use of both scratch and fine-tuned versions
of the GoogleNet and AlexNet architectures and compare them to a local
descriptor (HOG) with k-nearest neighbors (KNN) and a bag of visual
words with the histogram of oriented gradients (HOG-BOW) combined
with either a support vector machine (SVM) and multilayer perceptrons
(MLP). Using many experiments with the various techniques, we show
that the CNN based methods outperform the local descriptor and the bag
of visual words techniques. We also show that the reduction of the number
of neurons in the AlexNet architecture outperforms the original AlexNet
architecture and gives a remarkable improvement in the computing time.

Outline: The remaining parts of the chapter are organized in the follow-
ing way. Section 2.2 explains the deep CNN architectures and the reduction
of the number of neurons in detail. Section 2.3 entails brief discussions on
the hand-crafted local descriptors. In Section 2.4, we describe the plant
datasets and the experimental settings. Section 2.5 presents and discusses
the performance of the various techniques. The last section concludes and
recommends possible areas for future work.

2.2 Deep Convolutional Neural Networks
Deep convolutional neural networks (CNNs) were first introduced by (Le-
Cun et al., 1989) and have become the most influential machine learning
approach in the computer vision field.

A deep CNN architecture consists of several layers of various types.
Generally, it starts with one or several convolutional layers, followed by
one or more pooling layers, activation layers, and ends with one or a few
fully-connected layers.

There are usually a certain number of kernels in each convolutional
layer which can output the same number of feature maps by sliding the
kernels with a specific receptive field over the feature map of the previous
layer (or the input image in the case of the first convolutional layer). Each
feature map that is computed is characterized by several hyper-parameters:
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the size and depth of the filters, the stride between filters and the amount
of zero-padding around the input feature map (Castelluccio et al., 2015).

Pooling layers can be applied in order to cope with translational vari-
ances as well as to reduce the size of feature maps (Sladojevic et al., 2016).
They proceed by sliding a filter along the feature maps and outputting the
maximum or average value, depending on the choices of pooling, in every
sub-region.

A nonlinear layer or activation layer is conventionally applied to a
feature map after each convolutional layer to introduce nonlinearity to
the network. The Rectified Linear Unit (ReLU) function is a notable choice
(Glorot, Bordes, and Bengio, 2011; Couchot et al., 2016) because of the
computational efficiency and the alleviation of the vanishing gradient
problem. The ReLU basically converts the input to its positive value or
zero otherwise, i.e.

∫
(x) = max(0, x).

The fully-connected layers typically are the last few layers of the ar-
chitecture. The dropout technique can be applied to prevent overfitting
because its random selection mechanism reduces the effective number of
parameters in the gradient descent during training (Srivastava et al., 2014;
Yoo, 2015). The final fully-connected layer in the architecture contains the
same number of output neurons as the number of classes to be recognized.

2.2.1 AlexNet Architecture

The AlexNet architecture (Krizhevsky, Sutskever, and Hinton, 2012) fol-
lows the pattern of the LeNet-5 architecture (LeCun et al., 1989). The
original AlexNet contains eight weight layers, which consists of five convo-
lutional layers and three fully-connected layers.

The first two convolutional layers (conv{1,2}) are followed by a normal-
ization and a max pooling layer. The last convolutional layer (conv5)
is followed by the max pooling layer. Each of the sixth and seventh
fully-connected layers (fc{6,7}) contain 4,096 neurons. The final fully-
connected layer (fc8) contains 1,000 neurons because the ImageNet
dataset has 1,000 classes to be classified. The ReLU activation function is
applied to each of the first seven layers. A dropout ratio of 0.5 is applied
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to the fc6 and fc7 layers. The output from the fc8 layer is finally fed to a
softmax function.

In our study, the original AlexNet architecture is adapted by reducing
the number of neurons in the fc6 and fc7 layer from 4,096 neurons to
either 256, 512, and 1,024 neurons in both layers. The idea behind this
is to increase the computational performance and mitigate the risk of
overfitting (Xing and Qiao, 2016). We performed preliminary experiments
on the AgrilPlant dataset to choose the best number of neurons. The results
of this experiment are shown in Table 1. It shows that 1,024 neurons are
the most efficient in terms of accuracy and it provides 34% improvement
in training time compared to 4,096 neurons. Consequently, we set the
number of neurons in the fc6 and fc7 layers to 1,024 for all datasets. The
AlexNet architecture used in our works is shown in Figure 2.

Table 1: Accuracy comparison among different numbers of neurons and time im-
provement compared against 4,096 neurons in the AlexNet architecture
on the AgrilPlant dataset. The results are reported with test accuracies
and standard deviations using five simulations.

Number of neurons Accuracy Time improvement

4,096 88.30 ± 1.34 -

1,024 89.53 ± 0.61 34.06

512 89.13 ± 1.24 39.09

256 88.90 ± 1.35 41.08

2.2.2 GoogleNet Architecture

GoogleNet, presented in the work of (Szegedy et al., 2015), is among
the first architectures that introduced the inception module that greatly
dropped off the large amount of trainable parameters in the network.
The inception module uses a parallel combination of 1 × 1, 3 × 3, and
5 × 5 convolutions along with a pooling layer. Additionally, the 1 × 1
convolutional filter is added to the network before the 3 × 3, and 5 × 5
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Apple (0.85) 
Orange(0.10) 
Grape  (0.02) 
 
Tulip (0.03) 
 

Convolutional layers Fully connected layers Softmax Input image 

…

55 x 55 x 96 27 x 27 x 256 13 x 13 x 384 13 x 13 x 256 1024 1024 R 13 x 13 x 384 

Figure 2: The AlexNet architecture used in our work. R in the fc8 layer is the num-
ber of neurons, which represents the number of classes in each dataset,
which are set to 10, 184, and 36 for the AgrilPlant, the LeafSnap, and
the Folio dataset, respectively.

convolutions for dimensionality reduction. This is called the “network in
network” architecture (Lin, Chen, and Yan, 2013).

The GoogleNet architecture uses 9 inception modules, containing 22
layers along with four max pooling layers, and one average pooling layer.
The ReLU is used in all the convolutional layers, including those inside
the inception modules. To deal with the problem of vanishing gradients in
the network, inspired by the theoretical work by (Arora et al., 2014), two
auxiliary classifiers are added to the layers in the middle of the network
during the training process (Yoo, 2015). A dropout ratio of 0.4 is applied
to the softmax classifier. The illustration of the convolutional layers and
the inception modules designed in GoogleNet is shown in Figure 3. A more
detailed explaination along with all relevant parameters of the GoogleNet
architecture can be found in the original paper (Szegedy et al., 2015).
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Figure 3: The illustration of the GoogleNet architecture (Szegedy et al., 2015).
All convolutional layers and inception modules have a depth of two.
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2.3 Classical Local Descriptors

2.3.1 Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) was initially introduced for
human detection (Dalal and Triggs, 2005). The HOG feature extractor
represents objects by counting occurrences of gradient intensities and
orientations in localized portions of an image. Based on the work of
(Bertozzi et al., 2007; Surinta et al., 2015), the HOG descriptor computes
feature vectors using the following steps:

1. Split the image into small blocks of n×n cells.

2. Compute horizontal gradient Hx and vertical gradient Hy of the
cells by applying the kernel [-1,0,1] as gradient detector.

3. Compute the magnitude M and the orientation θ of the gradient as:

M(x,y) =
√
H2x +H

2
y (1)

θ(x,y) = arctan
Hy

Hx
(2)

4. Form the histogram by weighing the gradient orientations of each
cell into a specific orientation bin.

5. Apply L2 normalization to the bins to reduce the illumination vari-
ability and obtain the final feature vectors.

In our preliminary experiments, we use 5 × 5 rectangular blocks and 8
orientation bins, thus yielding a 200-dimensional feature vector. We then
feed the feature vector to the KNN classifier.
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2.3.2 Bags of Visual Words with Histogram of Oriented Gradients

The idea of the bag of visual words (BOW) model (Csurka et al., 2004; Tsai,
2012) in computer vision is to consider an image consisting of different
visual words. The image descriptor can be obtained by clustering features
of local regions in the images, which contain rich local information of
the images, such as color or texture. Here, we combine BOW with the
HOG feature descriptor, resulting in HOG-BOW. The construction of the
HOG-BOW feature vectors involves the following steps:

1. To compute patches, the set of local region patches P is automatically
extracted from the dataset of images, P = {p1,p2, ...,pn}, where n is
the number of patches. The size of each patch is a square of w×w
pixels. Each patch is computed by using local descriptors, and then
used as an input to create a codebook.

2. The codebook C is obtained by applying the K-means clustering
algorithm over the extracted feature vectors of each patch based on
a number of centroids.

3. Construct the BOW feature by detecting the occurrences in the
image of each cluster. Each image is split into four quadrants and
we compute the feature activation using sum-pooling (Wang, Wang,
and Qiao, 2012).

In our experiments, based on the work of (Surinta et al., 2015), the
HOG descriptor is employed as the local descriptor. The number of patches
is set to 400,000, the size of each patch is 15 × 15 pixels, and the number
of centroids is set to 600. As the image is split into four quadrants, the
HOG-BOW generates 2,400 dimensional feature vectors.

The feature vectors are then fed to the classifiers, for which we use the
L2-SVM (Suykens and Vandewalle, 1999) and a Multi-Layer Perceptron
(MLP). The process of the HOG-BOW method used in our experiments is
illustrated in Figure 4.
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Figure 4: llustration of generating the BOW feature vectors.

2.4 Experiments

2.4.1 Plant Datasets

In our experiments, we performed experiments using three datasets:
AgrilPlant, Leafsnap, and Folio.

AgrilPlant: 1 The AgrilPlant dataset consists of 3,000 agriculture images
that are collected from the website www.flickr.com. It consists of 10
classes with the following plants: apple, banana, grape, jackfruit, orange,
papaya, persimmon, pineapple, sunflower, and tulip. Each class contains
exactly 300 images. The images may have been taken from five different
views, i.e. entire plant, branch, flower, fruit, and leaf. A sample of the
AgrilPlant dataset is shown in Figure 5a.

The challenges of classification on the AgrilPlant dataset are (a) the
similarity among some classes, i.e. apple, orange and persimmon have

1 The AgrilPlant dataset has been made publicly available and can be accessed at
https://www.ai.rug.nl/∼p.pawara.
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similar shapes and colors, (b) a diversity of plants within the same class,
for example, there are green and red apples, or there are varieties of tulips,
and (c) the existence of complex backgrounds or other objects such as
human, car, and house on several images.

LeafSnap: The Leafsnap dataset (Kumar et al., 2012) originally contained
185 tree species and is used for leaf recognition research. The dataset
consists of leaf images taken from two different sources; lab images and
field images. In our experiments, we performed experiments with field
images. This consists of 7,719 leaf images and has a coverage of 184 tree
species (one class is missing for the field images) of the Northeastern
United States. All the images were taken in outdoor environments with
mobile devices and might contain some amounts of noise, blur, and shad-
ows. The number of images in each class vary from 10 to 183 images. A
sample of the LeafSnap dataset is shown in Figure 5b.

Folio: The Folio dataset, introduced in the work of (Munisami et al.,
2015), consists of 32 different species of leaves which were collected from
the farm at the University of Mauritius. It consists of approximately 20
images for each species. All images were taken under daylight on a white
background. A sample of the Folio dataset is shown in Figure 5c.

2.4.2 Experimental Settings

We evaluate the deep CNNs architectures and the hand-crafted local
descriptors combined with KNN, SVM, and MLP for plant classification.
In our study, the plant datasets are split into a training set and test set
with the ratio of 80:20 and 5-fold cross validation is used to evaluate the
performance of the studied methods. The resolution of plant images is set
to 256 × 256 pixels.

Most parameters for the deep CNN architectures, for both AlexNet and
GoogleNet, are set to the same values for scratch and fine-tuned versions,
except for max iteration and step size that are set to different values. The
parameters settings are shown in Table 2.
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(a) AgrilPlant (b) LeafSnap (c) Folio

Figure 5: Some example images from the three datasets. Note that we show one
image per class for some classes in the datasets.

For the hand-crafted local descriptors, we combine the HOG with the
KNN classifier and the HOG-BOW with MLP and SVM. We select the
optimal k for the KNN classifier in the range of k = {3, 5, 7, 9}.

On each dataset, a grid search is applied to tune the C parameters
for the SVM in the range of C = {21, 22, ..., 28} and choose the best C
parameter that gives the highest accuracy result. We then perform the
5-fold cross validation using this C parameter.

For the MLP, we use the scaled conjugate gradient (Møller, 1993) as a
training algorithm. The number of neurons is set to 512 and the learning
rate is set to 1.0E−3. These values resulted in the best performance using
preliminary experiments.
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Table 2: Summary of experimental parameters for the AlexNet and GoogleNet
architectures on the three datasets.

Parameters AgrilPlant LeafSnap Folio

Learning rate 1.0E−3 1.0E−3 1.0E−3

Weight decay 5.0E−4 5.0E−4 5.0E−4

Train batch size 20 20 20

Validation batch size 10 10 10

Max iteration (scratch) 50,000 50,000 50,000

Step size (scratch) 25,000 25,000 25,000

Max iteration (fine-tuned) 20,000 20,000 20,000

Step size (fine-tuned) 10,000 10,000 10,000

Test iterations of solver 30 77 6

Test iterations evaluation 60 154 12

2.5 Results and Discussion
We now report the test accuracies using the deep CNN methods and hand-
crafted local feature descriptors with different classifiers. The experiments
are carried out based on 5-fold cross validation and we report the top-1
accuracy. The results are shown in Table 3.

2.5.1 AgrilPlant Dataset Evaluation

Comparing the performance of the deep CNN methods and the hand-
crafted local feature descriptors, the deep CNN methods consistently
outperform the local descriptors. The fine-tuned approaches of both the
GoogleNet and the AlexNet architectures obtain the best performance,
reaching an accuracy of 98.33% and 96.37%, respectively. This is an
improvement of approximately 5% and 6.8% over the scratch versions of
each architecture. The GoogleNet fine-tuned version gives approximately
19% better performance than the HOG-BOW with SVM, which obtains
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Table 3: Test Accuracy comparison among all techniques on three plant datasets.

Methods AgrilPlant LeafSnap Folio

HOG with KNN 38.13 +− 0.53 58.51 +− 2.47 84.30 +− 1.62
HOG-BOW with MLP 74.63 +− 2.16 79.27 +− 3.36 92.37 +− 1.78
HOG-BOW with SVM 79.43 +− 1.68 72.63 +− 0.38 92.78 +− 2.17
AlexNet scratch 89.53 +− 0.61 76.67 +− 0.56 84.83 +− 2.85
AlexNet fine-tuned 96.37 +− 0.83 89.51 +− 0.75 97.67 +− 1.60
GoogleNet scratch 93.33 +− 1.24 89.62 +− 0.50 89.75 +− 1.74
GoogleNet fine-tuned 98.33 +− 0.51 97.66 +− 0.34 97.63 +− 1.84

the best performance among the local feature descriptors. The HOG-BOW
with SVM outperforms the HOG-BOW with MLP with 4.8% difference.
The HOG with KNN obtains the worst performance with an accuracy of
38.13%.

2.5.2 LeafSnap Dataset Evaluation

For the LeafSnap dataset, the GoogleNet fine-tuned and scratch versions
obtain the best performance with an accuracy of 97.66%, and 89.62%,
respectively. The AlexNet fine-tuned architecture follows up with an accu-
racy of 89.51%. The HOG-BOW with MLP, however, slightly outperforms
the AlexNet scratch architecture with an accuracy of 79.27%. Comparing
this to previous work on the LeafSnap dataset using curvature histograms,
(Kumar et al., 2012) reported a top-5 accuracy of 96.8%. We note that
GoogleNet fine-tuned significantly outperforms that method with a top-1
accuracy of 97.66%. Comparing between the local feature descriptors, The
HOG-BOW with MLP gives an accuracy of approximately 6.6% and 20.7%
higher than the HOG-BOW with SVM and the HOG with KNN, respectively.
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2.5.3 Folio Dataset Evaluation

The work of (Munisami et al., 2015) reported an accuracy of 87.3% by
using shape features and a color histogram with KNN which outperforms
the AlexNet scratch version on our study with an accuracy of 84.83In
our experiments, the AlexNet fine-tuned and the GoogleNet fine-tuned
architectures obtain the best results with an accuracy of 97.67% and
97.63%, respectively. The next two techniques with the best performance
are the HOG-BOW with SVM and the HOG-BOW with MLP classifiers,
both of which yield an accuracy of 92.73% and 92.37%, respectively.
The scratch version of GoogleNet still obtains acceptable results with an
accuracy of 89.75%. Note that on this dataset, the HOG-BOW with either
SVM and MLP classifiers gives roughly 8% better performance than the
AlexNet scratch version. The HOG with KNN gives the worst result with
an accuracy of 84.30%. The evaluation on the Folio dataset shows that
the deep CNN architectures also perform well on a small dataset as this
dataset contain only 637 images in total for 32 classes.

2.6 Conclusions
In this chapter, we have presented a comparative study of some classical
feature descriptors to deep CNN approaches on three plant datasets. The
HOG feature descriptor combined with KNN, and HOG-BOW combined
with SVM and MLP classifiers are compared to AlexNet and GoogleNet,
both trained from scratch and using the fine-tuned versions as deep CNN
architectures.

We evaluated all the image recognition techniques on three plant
datasets and achieved notable overall performances. The fine-tuned ver-
sions of the deep CNNs architectures persistently outperform the classical
feature descriptors techniques on all datasets. The GoogleNet fine-tuned
architecture obtains the best result with accuracies of 98.33% and 97.66%
on the AgrilPlant dataset and the LeafSnap dataset, respectively. The
AlexNet fine-tuned and the GoogleNet fine-tuned techniques also give
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the best result on a relatively small dataset, Folio, with an accuracy of
approximately 97.6%.

Comparing between the HOG-BOW descriptors on each of the three
dataset, on the AgrilPlant dataset, the HOG-BOW combined with SVM
performs 4.8% better than the HOG-BOW combined with MLP. On the
other hand, the HOG-BOW combined with MLP works 6.64% better than
the HOG-BOW combined with SVM. On the Folio dataset, however, both
HOG-BOW descriptors give insignificantly different results with an accu-
racy of approximately 92%. Among all studied techniques, the HOG with
KNN always yields the worst accuracy on all datasets.

In further work, we want to study the deployment of deep learning in
an unmanned aerial vehicle system targeted for precision identification of
plant diseases.
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Data augmentation plays a crucial role in increasing the number of training
images, which often aids to improve classification performances of deep
learning techniques for computer vision problems. In this chapter, we
employ the deep learning framework and determine the effects of several
data-augmentation (DA) techniques for plant classification problems. We
use two convolutional neural network (CNN) architectures, AlexNet, and
GoogleNet trained from scratch or using pre-trained weights. These CNN
models are then trained and tested on both original and data-augmented
image datasets for three plant classification problems: Folio, AgrilPlant,
and the Swedish leaf dataset. We evaluate the utility of six individual DA
techniques (rotation, blur, contrast, scaling, illumination, and projective
transformation) and several combinations of these techniques, resulting
in a total of 12 data-augmentation methods. The results show that the
CNN methods with particular data-augmented datasets yield the highest
accuracies, which also surpass previous results on the three datasets.
Furthermore, the CNN models trained from scratch profit a lot from data
augmentation, whereas the fine-tuned CNN models do not profit from
data augmentation. Finally, we observed that data-augmentation using
combinations of rotation and different illuminations or different contrasts
helped most for getting high performances with the scratch CNN models.

27
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This chapter was published in:

Pawara, P.,Okafor, E., Schomaker, L.R.B., and Wiering, M.A. (2017). Data
augmentation for plant classification. International Conference on Ad-
vanced Concepts for Intelligent Vision Systems (ACIVS), pages 615-626.
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3.1 Introduction
Plant classification using machine learning and computer vision algorithms
is concerned with categorizing plant images into identifiable groups. This
may help people to know, for example, the name of a tree they encounter
based on a picture from a leaf of the tree. The classification problem can
be challenging because of issues related to a high inter-class similarity,
intra-class diversities, possible variations of complex backgrounds, and
color and illumination variations within the image dataset. Previous stud-
ies have employed several supervised learning algorithms combined with
hand-crafted features (Hsiao et al., 2014; Kumar et al., 2012; Nilsback
and Zisserman, 2008; Wang et al., 2011) and global features (Bama et al.,
2011) for investigating plant identification. An extension of the hand-
crafted features’ use is the combination of geometric-based features with a
probabilistic neural network for classifying different classes of the Foliage
dataset (Kadir et al., 2011). The recent advances in deep learning (Guo
et al., 2016) have led to some big successes in several plant recognition
studies (Dyrmann, Karstoft, and Midtiby, 2016; Ghazi, Yanikoglu, and
Aptoula, 2017; Mohanty, Hughes, and Salathé, 2016). The authors in (Mo-
hanty, Hughes, and Salathé, 2016) have investigated the use of the famous
CNN architectures AlexNet (Krizhevsky, Sutskever, and Hinton, 2012) and
GoogleNet (Szegedy et al., 2015) for plant classification. Moreover, the
research in (Ghazi, Yanikoglu, and Aptoula, 2017) considered the previous
architectures and VGGNet (Simonyan and Zisserman, 2014) in their plant
classification task. Generally, CNN architectures consist of many layers and
have millions of parameters in the network (LeCun, Bengio, and Hinton,
2015). Therefore, they need large datasets during the learning process.

Several works (Ghazi, Yanikoglu, and Aptoula, 2017; McFee, Humphrey,
and Bello, 2015; Salamon and Bello, 2017) have shown that increasing the
number of images in training set with data-augmentation (DA) techniques
is useful to reduce overfitting and improve the overall performance of
the CNN models. The fundamental idea is that the object of interest in
an image will not change its class if the image is somewhat changed
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using a particular image-processing operation. Data augmentation can
be performed in many ways, e.g., using translation, rotation, change in
illumination, and color casting and processed in two stages: off-line and
online (Sato, Nishimura, and Yokoi, 2015). Off-line augmentation involves
an increase in the number of training images before the training starts,
while the online stage increases the number of image appearances during
the training process. The authors in (Lee et al., 2016) performed off-
line augmentation by rescaling the training images into three different
sizes, cropping them into smaller-sized images, and combining this with
horizontal flips for creating the augmented images during training. The
leaf classification system in (Sladojevic et al., 2016) employed three
data-augmentation techniques: affine and perspective transformation,
and rotation during the training stage. However, there has been little
research to investigate the effects of many different single and combined
data-augmentation methods, combining different pose and illumination
variants, in order to determine if this helps the CNNs obtain significantly
better performances.

Contributions: In this chapter, we examine the effects of different data-
augmentation techniques using two off-the-shelf CNN techniques: AlexNet
and GoogleNet, which we train from scratch or using pre-trained weights.
We use three different image datasets of plants, and we evaluate the
CNNs on the original datasets, the datasets obtained using a single DA
technique, and the datasets obtained using several combinations of DA
techniques. Note that the DA techniques are only applied to the training
data. Therefore this results in 12 training set variants for the three plant
recognition datasets. The results show that when the CNN methods are
trained from scratch, the use of DA techniques helps obtain higher per-
formances. Especially combinations of the rotation and illumination DA
techniques or rotation and contrast are most useful for the considered
datasets. For the fine-tuned CNN models, the gains of DA techniques are
much smaller, although they helped to get the best results, which are also
better than previous results on the three plant datasets.
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Outline: Section 3.2 covers details of the three plant datasets used in
this study and the different data-augmentation techniques. The CNN meth-
ods and experimental settings are described in Section 3.3. The results are
shown and discussed in Section 3.4. Finally, we draw a conclusion and
recommend future work in Section 3.5.

3.2 Datasets and Data Augmentation
In this section, we describe the three plant datasets and the data augmen-
tation techniques used in the experiments. In Figure 6, we show some
examples of images within the datasets.

3.2.1 Datasets

The Folio dataset (Munisami et al., 2015), a relatively small dataset, con-
sists of 637 leaf images from 32 species. Each class contains approximately
20 images (three images are missing from the initial work of (Munisami
et al., 2015)). All images were taken under daylight on a plain back-
ground. The first classification system for this dataset used shape features,
and a color histogram with a k-nearest neighbor classifier (Munisami
et al., 2015) and reported an accuracy of 87.3%. The most recent study in
(Pawara et al., 2017b) employed CNN techniques applied to the original
images. The best CNN architecture obtained a high accuracy of 97.7%.
We used the same train/validation/test splits as in (Pawara et al., 2017b)
with a ratio of 70:10:20.

AgrilPlant: The AgrilPlant dataset was presented in (Pawara et al., 2017b),
and it consists of 3,000 plant images from 10 classes: apple, banana,
grape, jackfruit, orange, papaya, persimmon, pineapple, sunflower, and
tulip. Each class consists of 300 images. The AgrilPlant dataset faces some
challenges due to the following reasons: 1) a dissimilarity of plants within
the same class, for example, there are varieties of shape and color of
tulips, or there are several colors of apples, 2) a similarity among some
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classes, for example, apple, orange, and persimmon images consist of
similar shapes and colors, and 3) the complex backgrounds in most of the
images. We adopted the same dataset splits as previously used in (Pawara
et al., 2017b) with a ratio of 70:10:20 for the train, validation, and testing
sets, respectively.

Swedish: The Swedish dataset (Söderkvist, 2001) contains 1,125 plant
leaf images on a plain background of 15 different Swedish tree species,
with 75 images per class. The earlier research in (Söderkvist, 2001) com-
bined simple features such as moments, area and curvature and reported
an accuracy of 82%. To the best of our knowledge, the study in (VijayaLak-
shmi and Mohan, 2016) yielded the highest accuracy of 99.5%. This was
achieved by combining shape, color, and Haralick features.

The authors in (Atabay, 2016) proposed CNN methods with horizontal
flip augmentation on this dataset and obtained an accuracy of 99.1%. The
challenge of classification on the Swedish dataset (Mouine, Yahiaoui, and
Verroust-Blondet, 2013; Wang, Liang, and Guo, 2014; Zhang et al., 2016)
is its high inter-species similarity among several classes. Our study used
the same dataset splits as in (Söderkvist, 2001) with randomly selecting
25 images per class for training and the rest for testing. Additionally, the
training images were further dissected in the ratio 1:4 for validation and
training sets, respectively.

3.2.2 Data Augmentation

In this subsection, we describe the six different data-augmentation tech-
niques examined to increase the number of images within the training
set for each of the datasets discussed in the previous subsection. The
data-augmentation techniques we studied in this chapter are:

Rotation: Our preliminary experiments were done on the AgrilPlant
dataset. Using different rotational angles that exist between 8°and 90°,
we observed that using a tilt of an image with angle 30°obtained good
performances. This is the reason for the choice of using random image
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Figure 6: Some example images from the three datasets in which we show one
image per class for some classes in the datasets. From the top row to
the bottom row we can see example images from the Folio, AgrilPlant,
and Swedish datasets.

rotations with a rotation angle in [-30°, 30°], with empty space padded
with white pixels.

Blur: The goal of the blur augmentation is to de-emphasize differences
in adjacent pixel values. In this chapter, the 2D Gaussian smoothing kernel
is used. The kernel size is set to 2 × (d2σe) + 1, where d.e is a ceiling
function, and σ is the standard deviation of the Gaussian distribution
which is randomly set between 2 and 8.

Scaling: The training images are rescaled to larger ones with a random
factor between 2 and 8 times. Hence, when feeding the images into the
CNNs, we crop the images from the up-scaled images, and this corresponds
to a small subpart of the image, which may contain important features of
the plants.

Contrast: We first convert images from an RGB color map to an HSV
color map, then multiply the S and V components of the images by a
random factor between 0.8 and 2. Finally, the images are converted back
to the RGB color representation.

Illumination: The training images are adjusted by adding random
values between 10 and 80 to the R, G and B channels.
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Projective: The projective transformation changes the projective view-
point of the observer. After transformation, straight lines still remain
straight (Sladojevic et al., 2016) but it does not preserve parallelism,
length, and angle. The projective transformation requires a 3× 3 transfor-
mation matrix1.

(xj,yj, 1) = (xi,yi, 1)×


cos(θ) sin(θ) t1

sin(θ) cos(θ) t2

0 0 1

 (3)

where (xi,yi, 1) represents the coordinate before the projective trans-
formation, (xj,yj, 1) denotes the coordinate after the transformation, θ is
the rotation angle of the image, and [t1 t2]

T is the projection vector which
is set to [0.001 0.001]T . The angle θ is randomly chosen from the interval
[1, 30].

The effects of all DA techniques on some example images of the AgrilPlant
dataset are shown in Figure 7. In addition to the use of these single DA
methods, we also consider several combinations of the earlier discussed
methods to obtain more training images. Because testing all combinations
is almost infeasible, we tested only combinations in which the rotation
operator is part of the combined DA technique. This results in six possible
combinations of DA methods , including rotation + blur, rotation + con-
trast, rotation + scaling, rotation + illumination, rotation + projective,
and rotation + contrast + illumination. Each single data-augmentation
method adds eight adapted copies of the original images while the com-
bination of two DA methods results in 16 different copies of the images.
Lastly, the combination of three DA methods yields 24 times more training
images. The total number of images present in each of the original and
the DA image datasets are summarized in Table 4.

1 https://www.graphicsmill.com/docs/gm5/Transformations.htm
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Original Rotation Blur Contrast Scaling IlluminationProjective

Figure 7: Effects of data augmentation on some example images of the AgrilPlant
dataset.

3.3 Deep Learning Architectures

3.3.1 CNN Methods

In our study, we employ two CNN architectures: AlexNet and GoogleNet
for evaluating both original and several variants of data-augmented image
datasets for the three plant recognition tasks.

AlexNet: The CNN architecture AlexNet (Krizhevsky, Sutskever, and
Hinton, 2012) outperformed other computer vision methods during the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. The
network consists of five convolutional layers, three max pooling layers, two
dropout layers, and three fully-connected layers ending with a SoftMax
classification layer. It uses the Rectified Linear Unit (ReLU) for the non-
linear activation functions. In our study, we employed a customised version
of AlexNet as proposed in (Pawara et al., 2017b), in which we reduced
the number of hidden units in the last fully-connected layers to 1024
neurons. We also consider two instances of the AlexNet architecture: using
randomly initialized weights (scratch) and using pre-trained weights (fine-
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Table 4: Summary of the number of training images in the data-augmented
datasets.

DA sets Folio AgrilPlant Swedish

Original 445 2100 300

Individual DA 4,005 18,900 2,700

Combination of two DAs 7,565 35,700 5,100

Combination of three DAs 11,125 52,500 7,500

tuned). In the fine-tuned network, the pre-trained weights from ImageNet
were used, after which we trained the whole architecture based on the
errors for classifying the training images from the plant datasets.

GoogleNet: GoogleNet (Szegedy et al., 2015) is a deeper network, but
has a much lower number of parameters (4 million parameters) compared
to AlexNet (60 million parameters). This is a consequence of the inception
module that vastly decreases the amount of trainable parameters in the
network. More specifically, GoogleNet uses nine inception modules, four
convolutional layers, four max-pooling layers, three average pooling layers,
five fully-connected layers and three SoftMax layers for the main and
auxiliary classifiers in the network. Inspired by the network-in-network
approach (Lin, Chen, and Yan, 2013), the inception module uses a parallel
combination of 1× 1, 3× 3, and 5× 5 convolutions along with a pooling
layer. A more detailed explanation and all relevant parameters of the
GoogleNet architecture can be found in the original paper (Szegedy et al.,
2015). Similarly as with AlexNet, we evaluated both scratch and fine-tuned
versions of the GoogleNet architecture.

3.3.2 Experimental Setup

We evaluate the deep CNN architectures with the different data-aug-
mentation schemes for the three plant classification tasks. In the experi-
ments, we employed 5-fold cross validation to evaluate the performances
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of the different methods. The resolution of the images is set to 256× 256
pixels.

The AlexNet and GoogleNet hyper-parameters are set as follows: number
of iterations: 20,000 for fine-tuned and 50,000 for the scratch version,
step size: 10,000 and 25,000 for fine-tuned and scratch, respectively, train
batch size: 20, validation batch size: 10, base learning: 0.001, momentum:
0.9, weight decay: 0.0005, and test interval: 10,000. Each dataset contains
a different number of images, therefore we set different batch sizes for
the different datasets as 7, 30 and 8 for Folio, AgrilPlant, and Swedish,
respectively.

To summarize, we performed a total of 52 experiments on each dataset,
which vary in the following settings: two choices of deep learning ar-
chitecture (AlexNet and GoogleNet), two choices of training mechanism
(fine-tuned or scratch), using the set of original images, and 12 datasets
constructed with different data-augmentation techniques (as described in
Section 3.2.2).

3.4 Results
In this section, we report the test accuracies using the deep learning
methods on the original and augmented datasets for the different plant
recognition tasks. We report the top-1 accuracy and average the results
over the five folds.

3.4.1 Folio Dataset Evaluation

Table 5 shows the plant classification accuracies with different DA tech-
niques on the Folio dataset using AlexNet and GoogleNet with both scratch
and fine-tuned models. The scratch AlexNet always profits from the differ-
ent DA techniques on this dataset, whereas scratch GoogleNet also profits
from most DA techniques, but in a lesser degree. Scratch AlexNet profits
most from the combined effects of rotation and illumination, or combined
effects of rotation, contrast, and illumination which led to a performance
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Table 5: Recognition results (accuracy and standard deviation) using different
DA schemes for the Folio dataset.

Augmentation methods AlexNet GoogleNet
Scratch Fine-tuned Scratch Fine-tuned

Original (no flip) 84.83 +− 2.85 97.67 +− 1.60 89.75 +− 1.74 97.63 +− 1.84

Original (flip) 87.50 +− 2.62 98.85 +− 0.44 93.46 +− 1.83 98.85 +− 0.77

(a) Rotation 92.69 +− 2.22 98.27 +− 0.38 93.08 +− 0.63 99.04 +− 0.38
(b) Blur 88.65 +− 1.31 98.65 +− 0.74 93.59 +− 1.94 98.85 +− 0.99
(c) Contrast 92.69 +− 0.44 99.04 +− 0.38 93.65 +− 0.74 98.65 +− 0.74
(d) Scaling 89.81 +− 0.74 99.04 +− 0.97 95.00 +− 0.44 98.65 +− 0.74
(e) Illumination 93.46 +− 2.84 98.46 +− 0.63 94.23 +− 0.99 99.42 +− 0.38
(f) Projective 93.08 +− 0.63 98.65 +− 0.74 93.65 +− 0.97 98.27 +− 1.31

(a) + (b) 92.50 +− 1.15 98.27 +− 0.38 93.27 +− 0.97 98.65 +− 1.15
(a) + (c) 95.00 +− 0.99 99.04 +− 0.94 94.81 +− 1.15 98.46 +− 0.89
(a) + (d) 92.69 +− 1.33 98.46 +− 0.63 93.65 +− 0.74 98.85 +− 1.33
(a) + (e) 96.35 +− 0.74 98.65 +− 1.31 94.42 +− 0.74 98.85 +− 1.33
(a) + (f) 92.69 +− 0.77 97.50 +− 0.97 93.65 +− 1.31 98.65 +− 0.74
(a) + (c) + (e) 96.35 +− 0.97 98.46 +− 0.63 94.23 +− 1.60 98.65 +− 0.74

improvement of around 8.8% compared to using the original images. The
best single DA technique for scratch AlexNet is the illumination operator,
and blur is the DA technique that helps the least in getting higher per-
formances. For scratch GoogleNet the best DA technique uses the scaling
operation and this leads to 1.5% accuracy improvement compared to train-
ing on the original images. For the fine-tuned architectures, GoogleNet
with the illumination DA technique obtains the highest accuracy. Because
the fine-tuned models already perform very well with the original dataset,
the improvements are much smaller in this case than when using the
scratch CNN architectures.

When we compare our approaches to previous CNN experiments in
(Pawara et al., 2017b), which did not consider flipping of the images,
these new results show a significant improvement in the recognition
performance. This shows that the effect of flipping is also very important
for this dataset and that the offline DA techniques can help to obtain even
higher performances.



3.4 R E S U LT S 39

Table 6: Recognition results using different DA schemes for the AgrilPlant dataset.

Augmentation methods AlexNet GoogleNet
Scratch Fine-tuned Scratch Fine-tuned

Original 89.53 +− 0.61 96.37 +− 0.83 93.33 +− 1.24 98.33 +− 0.51

(a) Rotation 90.10 +− 1.08 96.90 +− 0.69 92.53 +− 1.49 98.17 +− 0.68
(b) Blur 82.97 +− 2.26 94.43 +− 1.33 87.80 +− 1.27 97.73 +− 0.95
(c) Contrast 89.53 +− 1.26 96.27 +− 1.15 94.10 +− 0.95 98.17 +− 0.63
(d) Scaling 90.20 +− 0.95 96.93 +− 0.93 94.00 +− 1.20 98.13 +− 0.62
(e) Illumination 90.13 +− 1.06 97.27 +− 0.38 95.03 +− 1.11 98.21 +− 0.89
(f) Projective 90.87 +− 1.14 96.20 +− 0.92 93.21 +− 1.04 98.21 +− 0.76

(a) + (b) 87.70 +− 1.25 96.23 +− 0.71 90.40 +− 1.87 98.27 +− 0.62
(a) + (c) 91.57 +− 0.96 97.10 +− 0.43 95.17 +− 1.38 98.60 +− 0.38
(a) + (d) 90.40 +− 1.12 96.50 +− 0.31 92.93 +− 1.89 98.10 +− 0.82
(a) + (e) 91.07 +− 0.49 97.03 +− 0.49 94.07 +− 1.46 98.43 +− 0.60
(a) + (f) 90.50 +− 0.63 96.77 +− 0.95 92.77 +− 1.38 98.13 +− 0.92
(a) + (c) + (e) 91.53 +− 0.78 96.77 +− 0.71 94.73 +− 0.69 98.53 +− 0.59

3.4.2 AgrilPlant Dataset Evaluation

For the AgrilPlant dataset we also used the two CNN architectures trained
from scratch or fine-tuned and evaluate them on both original and data-
augmented datasets. The results are shown in Table 6. We observe that
the fine-tuned GoogleNet with the combined effect of rotation and con-
trast yields the highest classification accuracy of 98.6%. The fine-tuned
AlexNet profits most from the illumination DA technique. The performance
improvements using DA on this dataset are much smaller than for the
previous dataset. The reason is that there are 210 training images per
class in this dataset, whereas there are only 14 training images per class
in the Folio dataset. Still, for scratch AlexNet the combined DA techniques
rotation+contrast and rotation+contrast+illumination result in a perfor-
mance improvement of 2% compared to training from the original dataset.
We also note that all CNN architectures with the blur DA technique obtain
lower performances than using the original images. The reason is most
probably that blurred images reduce the amount of salient features in the
images from this dataset, which are still present in the test images.
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Table 7: Average accuracies and standard deviation using different DA techniques
on the Swedish dataset.

Augmentation methods AlexNet GoogleNet
Scratch Fine-tuned Scratch Fine-tuned

Original 94.69 +− 1.18 99.65 +− 0.07 96.08 +− 1.10 99.81 +− 0.15

(a) Rotation 96.21 +− 0.80 99.52 +− 0.29 97.04 +− 0.66 99.87 +− 0.13
(b) Blur 94.75 +− 0.97 99.36 +− 0.22 96.27 +− 1.40 99.57 +− 0.58
(c) Contrast 95.09 +− 0.67 99.55 +− 0.37 96.69 +− 0.91 99.79 +− 0.18
(d) Scaling 94.88 +− 0.78 99.60 +− 0.19 96.53 +− 1.25 99.84 +− 0.15
(e) Illumination 95.23 +− 0.53 99.49 +− 0.42 96.05 +− 0.91 99.76 +− 0.17
(f) Projective 96.88 +− 0.24 99.41 +− 0.07 96.64 +− 0.65 99.73 +− 0.13

(a) + (b) 96.40 +− 1.20 99.49 +− 0.17 97.12 +− 0.33 99.81 +− 0.15
(a) + (c) 97.07 +− 0.52 99.41 +− 0.15 98.24 +− 0.52 99.84 +− 0.11
(a) + (d) 96.40 +− 0.72 99.65 +− 0.22 97.68 +− 0.37 99.92 +− 0.07
(a) + (e) 97.25 +− 0.41 99.65 +− 0.28 98.16 +− 0.57 99.81 +− 0.22
(a) + (f) 97.81 +− 0.77 99.41 +− 0.07 97.55 +− 0.92 99.81 +− 0.07
(a) + (c) + (e) 97.60 +− 0.57 99.76 +− 0.20 97.68 +− 0.77 99.73 +− 0.16

3.4.3 Swedish Dataset Evaluation

The plant classification accuracies with different DA schemes on the
Swedish dataset are reported in Table 7. The results show that the scratch
CNN architectures profit from almost all DA methods. The biggest perfor-
mance improvement is for scratch AlexNet where the use of the combined
rotation+projective DA technique leads to a performance improvement
of 3.1%. For this dataset, the fine-tuned CNN models do not profit from
the DA techniques, and often the results using a DA technique are even a
bit lower than using the original dataset. The fine-tuned AlexNet obtained
the best performance with the combined rotation+contrast+illumination
DA technique and obtained an accuracy of 99.76%, while the fine-tuned
GoogleNet worked best with the combined rotation+scaling DA method
with an accuracy of 99.92%. Both these fine-tuned versions outperformed
the previous study in (VijayaLakshmi and Mohan, 2016) which combined
shape, color, and Haralick texture features and reported an accuracy of
99.5%.
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3.4.4 Discussion

We have performed experiments on 3 datasets with 52 different techniques.
If we look at the combined results, we can derive the following conclusions:

• The scratch version of AlexNet profits most from data augmentation.
The reason is probably that it consists of most parameters to train
and therefore larger datasets are very helpful.

• The fine-tuned CNN models hardly profit from data augmentation for
the considered datasets. One reason is that the performances of the
fine-tuned CNN methods are already very good, so there is not much
room for improvement. Still, scaling helps the fine-tuned AlexNet
with 0.3% average accuracy improvement and the illumination DA
technique helps the fine-tuned GoogleNet a bit with an average
accuracy improvement of 0.2%.

• For scratch AlexNet particular combined DA techniques lead to the
biggest performance improvements. The average improvement for
the three datasets using the combined DA technique rotation +
contrast + illumination is 4.6%. This is followed by the combination
of rotation and illumination with an average gain of 4.3%.

• For scratch AlexNet, the best single DA technique uses the projective
transformation, which helps to improve the average accuracies with
3.0%.

• The scratch GoogleNet also profits most from combined DA tech-
niques, where the combination of rotation and contrast helps to get
1.8% higher average accuracy.

• For scratch GoogleNet, the best single DA technique uses the scaling
operator, which helps to improve the average accuracies with 0.9%.



42 D ATA AU G M E N TAT I O N F O R P L A N T C L A S S I F I C AT I O N

3.5 Conclusion
We have investigated the usefulness of 6 different data-augmentation
techniques and combinations of them using two well-known CNN archi-
tectures on three plant datasets. The results show that data-augmentation
methods are important to obtain higher accuracies for CNN models trained
from scratch. This shows that more training data helps a lot, which is
also because some of the datasets do not contain many original training
images. For the scratch AlexNet and GoogleNet architectures, especially
the combined effects of rotation and illumination or rotation and con-
trast are very helpful. The blur operation does not help to obtain higher
accuracies and sometimes even results in worse performances, despite
the increase in the amount of training images. The fine-tuned AlexNet
architecture profits a bit from the scaling DA technique, whereas the fine-
tuned GoogleNet profits a bit from the illumination DA technique, but
most other DA techniques are not helpful to obtain higher accuracies with
the pre-trained CNN architectures. One reason why the fine-tuned CNN
models do not really profit from data augmentation, is that they obtain
very high performances on the considered datasets when trained on the
original datasets. Therefore, there is very little room for improvement. The
scratch CNN architectures in general need much more training examples,
and therefore profit a lot from the combined DA techniques which increase
the number of different training images the most.

In future work, we want to examine the effects of data augmentation
on more complex datasets for which the fine-tuned CNN architectures
do not perform very well using only the original images. We also want
to examine the data augmentation techniques describes in (Okafor et al.,
2017), where new images containing multiple version of an original image
are constructed. Finally, instead of presetting the boundaries of the effects
of the DA techniques, we want to focus on learning the right amounts in
which images are changed with particular DA techniques using a novel
adversarial learning framework.
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Counting the number of fruits in an image is important for orchard man-
agement, but is complicated due to different challenging problems such
as overlapping fruits and the difficulty of creating large labeled datasets.
In this chapter, we propose using a data-augmentation technique that
creates novel images by adding a number of manually cropped fruits to
original images. This helps to increase the size of a dataset with new
images containing more fruits and guarantees correct label information.
Furthermore, two different approaches for fruit counting are compared: a
holistic regression-based approach, and a detection-based approach. The
regression-based approach has the advantage that it only needs as target
value the number of fruits in an image compared to the detection-based
approach where bounding boxes need to be specified. We combine both
approaches with different deep convolutional neural network architectures
and object-detection methods. We also introduce a new dataset of 1500
images named the Five-Tropical-Fruits dataset and perform experiments
to evaluate the usefulness of augmenting the dataset for the different
fruit-counting approaches. The results show that the regression-based
approaches profit a lot from the data-augmentation method, whereas the
detection-based approaches are not aided by data augmentation. Although
one detection-based approach finally still works best, this comes with the
cost of much more labeling effort.

43
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This chapter was published in:

Pawara, P., Boshchenko, A., Schomaker, L.R.B., and Wiering, M.A. (2020).
Deep Learning with Data Augmentation for Fruit Counting. International
Conference on Artificial Intelligence and Soft Computing (ICAISC), pages
203-214.
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4.1 Introduction
Estimating the number of fruits in orchards is an important task for farm-
ing management. Computer vision techniques and convolutional neural
networks (CNNs) (LeCun, Bengio, and Hinton, 2015; Schmidhuber, 2015)
have been used for the fruit-counting task and achieved very good perfor-
mances (Häni, Roy, and Isler, 2019; Liu et al., 2018; Rahnemoonfar and
Sheppard, 2017). Researchers have worked on two different approaches
of counting: regression-based counting (Arteta, Lempitsky, and Zisserman,
2016; Lempitsky and Zisserman, 2010; Stahl, Pintea, and Gemert, 2018)
and detection-based counting (Lempitsky and Zisserman, 2010; Paul Co-
hen et al., 2017). Despite obtaining high accuracies using deep learning
for object counting tasks (Boominathan, Kruthiventi, and Babu, 2016;
Koirala et al., 2019; Onoro-Rubio and López-Sastre, 2016; Zhang et al.,
2015b), fruit counting in images is still challenging due to several reasons
(Liu et al., 2018; Rahnemoonfar and Sheppard, 2017), including high vari-
ances in illumination, overlapping fruits, fruit occluded by other parts of
the tree, different sizes of fruits, and different degrees of ripeness of fruits
leading to high variances in colors. In addition to these obstacles, there are
few datasets with images of fruits, especially for the fruit-counting task,
because making an annotation for the dataset can be very time consuming
(Dwibedi, Misra, and Hebert, 2017).

It has been shown that increasing the number of images in the training
set by using data-augmentation techniques helps to improve the perfor-
mance of training CNNs (Perez and Wang, 2017; Taylor and Nitschke,
2017). Data-augmentation methods can be based on different approaches,
and generally modify the image properties (Brahimi et al., 2018; Pawara
et al., 2017a), such as changing color or contrast, horizontal/vertical
flipping, using rotation, scaling, and translation, or synthesizing data
(Rahnemoonfar and Sheppard, 2017; Tremblay et al., 2018). Several
researchers successfully used generative adversarial networks (GANs)
(Goodfellow et al., 2014; Antoniou, Storkey, and Edwards, 2017) or ran-
dom elastic morphing (Bulacu et al., 2009) for data augmentation. The
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augmentation approach described in (Dwibedi, Misra, and Hebert, 2017)
combines real and synthetic images by adding collages from real objects
to the images.

Contributions: To address the challenges discussed before, we ex-
tend previous research in several ways: (1) We introduce a new fruit
dataset, namely the Five-Tropic-Fruits (FTF) dataset 1, which can be used
for classification, detection, and counting. (2) We propose a fruit data-
augmentation (FDA) technique which is useful to increase the number
of images and the number of fruits in the images and apply FDA on the
training set of the FTF dataset. FDA is helpful to add as many fruits as
we want to the training images and can compute exact label information
(total number of fruits or bounding boxes). (3) We compare two fruit-
counting approaches (regression-based counting, and detection-based
counting) on the original and the augmented training set of FTF and
evaluate and compare the performances of two CNN architectures. For
regression-based counting, the CNN architectures ResNet50 (He et al.,
2016), and Inception-V3 (Szegedy et al., 2016) are used. For detection-
based counting, two object-detection architectures, Faster R-CNN (Ren
et al., 2015) and SSD-MobileNet (Howard et al., 2017), are trained for
performing fruit detection and subsequently fruit counting.

Outline: Section 4.2 covers details of the proposed approach of our
research. Section 4.3 discusses results of the experiments and Section 4.4
draws conclusions and describes possible future work.

4.2 Proposed Approach
In this section, we explain the details of our proposed approach for the
fruit-counting system.

1 The FTF dataset has been made publicly available and can be accessed at
https://www.ai.rug.nl/∼p.pawara.
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Figure 8: System pipeline

4.2.1 Overall Pipeline

Figure 8 illustrates the overall fruit-counting pipeline. The proposed ap-
proach starts with dataset pre-processing, consisting of data collection and
data annotation (Section 4.2.2). Then we perform FDA on the original
training set (Section 4.2.3), resulting in an augmented set. The original
and the augmented training images are used as inputs for the training
stage of two fruit-counting approaches (Section 4.2.4): regression-based
counting and detection-based counting. Each of the counting approaches
CNNs are trained on the original training set (yielding the O-models), and
the augmented training set (resulting in the A-models). Finally, we evalu-
ate and compare the performances of the O-models and the A-models in
the testing stage. The details of each stage are explained in the following
subsections.

4.2.2 Dataset

4.2.2.1 Data collection

The Five-Tropic-Fruits (FTF) dataset contains 5 classes of fruit images:
apple, custard apple, lemon, pear, and persimmon. All images have been
collected from the internet. Each image contains only one type of fruit
and can consist of up to 15 fruits. The images can be either an indoor or
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outdoor scene and can cover various objects and backgrounds. The fruits
in the images may be occluded and have different levels of overlapping.
Some fruits can also be truncated around the border of the images. We
collected 300 images per class. The dataset is split into a training set of
80% and a test set of 20%.

4.2.2.2 Image annotations

We compare two counting approaches: regression-based counting and
detection-based counting. These two approaches require different formats
of ground truths, which we will explain in more detail in Section 4.2.4.
For both approaches, we start by manually annotating each image using
LabelImg 2. Each fruit will be labeled and counted as one fruit even if
it is occluded or truncated. Locations (bounding boxes) of fruits in the
images and the total counts and class names are kept in XML files. Figure 9
shows some example images from the FTF dataset, their bounding-box
annotations and the ground truths (total counts) for the regression-based
counting task.

4.2.3 Fruit Data Augmentation (FDA)

In this subsection, we present the fruit data-augmentation method used
for the counting task. The objective of FDA is to increase the number of
fruits in the training images and the total number of images in the training
set. The steps of FDA are:

1. Create fruit masks: We manually created 20 object masks of each
fruit in a Portable Bit Map (PBM) format with a white object and
black background.

2. Select background images: Background images are selected from
the training set of the FTF dataset. Only images with a number
between 1 and 8 fruits will be used as the background images.

2 https://github.com/tzutalin/labelIm
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Figure 9: Example images from the FTF dataset. Some images show that some
fruits are occluded or truncated. The first row shows example images
from the classes: apple, custard apple, lemon, pear, and persimmon,
respectively. The second and the third row show the bounding boxes
and the labels (total counts) of the images used for the detection-based
and regression-based counting approach, respectively.

3. Augment the fruit masks: We extracted the masks and perform the
following augmentation methods on the masks:

• Rotation: The mask objects are rotated with random angles in
[−30°, 30°].

• Scaling: The mask objects are relatively big compared to the
background images. So we rescaled the mask images to smaller
sizes with a random factor in [0.4, 0.6].

4. Add fruit masks to the background images: While placing the
masks on the background images, the following cases are considered:

• Number of objects to be added: The specified task is to count
up to 15 fruits. As we selected background images that can
already contain up to 8 fruits, we set a maximum number of
objects to be placed in the background images to 7. Therefore
the fruits added are of the same class and their total amount is
randomly chosen between 1 and 7.

• Occlusion and truncation: There are two cases of occlusion:
the occlusion between the masks, and the occlusion between
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Training images

Take images
 with fruits ≤ 8

Background images

  Augmented image

Augmented masksFruit masks

.	.	.	

Extracted masks

.	.	.	

Figure 10: The fruit data-augmentation (FDA) process. The flowchart shows an
example of its working on the apple class. In the example, 6 apples
were added to the background (original) image.

the masks and the existing fruits in the background images.
Both occlusion factors are set to a maximum Intersection-over-
Union (IoU) score of 0.5, which means each object can be
overlapped up to 50%. A truncation factor is set to 0.1 to
ensure that at least 90% of the masks will be placed on the
background images. The positions of the existing fruits in the
background images can be retrieved from the corresponding
XML file of the image.

• Blending mode: Our preliminary experiments showed that
adding objects on background images with Gaussian smoothing
can reduce boundary artifacts and give better performance.
Hence, we place the objects on background images using Gaus-
sian Blurring with a Gaussian kernel size set to [5,5] for which
the standard deviation of the kernel is set to 2.

Figure 10 shows the overall process of FDA. We used FDA to add around
13,100 images to the original training set of 1200 images.
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4.2.4 Deep Learning for Fruit Counting

In this subsection, we explain the deep learning architectures for the
regression-based and the detection-based counting approaches.

4.2.4.1 Regression-based counting

There are two stages for regression-based counting: the training and
testing stage.

1. Training stage: In our work, two state-of-the-art deep learning archi-
tectures (ResNet50 (He et al., 2016), and Inception-V3 (Szegedy et al.,
2016)) are trained on the original and the augmented training set of the
FTF dataset. Both CNN models are trained with two training schemes
by using randomly initialized networks (scratch) or networks that were
trained on ImageNet (pre-trained). In the usual regression task, a single
value is used as a target value. For example, an image with 5 apples is
assigned the target value 5. For the proposed regression-based counting
task, we predict both the total count and the class of the possible fruits
in an image. Hence, instead of using a single value, we construct a target
vector with n = 5 values. We obtain the ground truth during the training
process from the XML files described in Section 4.2.2.2, and compute the
target output using the number of fruits and class. For example {5,0,0,0,0}
means an image contains 5 apples, while {0,0,0,0,13} means an image
contains 13 persimmons. The deep learning architectures are trained by
optimizing the mean absolute error (MAE) loss function using stochastic
gradient descent (SGD) with momentum. The MAE loss function LMAE
for a single training example is defined as:

LMAE =
1

n

n∑
i=1

|yi − ŷi| (4)

Given n classes, yi is the target value for a given class i, and ŷi is the
predicted value estimated by the network (for example, {2, 0, 3, 0, 0} if the
network predicted that an image has 2 apples and 3 lemons). Note that
in the experiments we do not round off the continuous predicted values.
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There are two layers at the end of the networks. The first fully-connected
layer uses a Rectified Linear Unit (ReLU) activation function with 1024
hidden units. The final layer uses linear activation functions and n output
units to compute the predicted values.

For regression-based counting, there are 8 training configurations (2
CNN architectures × 2 (pre-trained or scratch) × 2 training sets). All
the configurations use the same hyper-parameters values (momentum
0.9, learning rate 0.0001, batch size 64, and 1,000 epochs), which were
selected after some preliminary experiments. The models trained with
the original training images are called the O-models, whereas the models
trained with the augmented training images are called the A-models.

2. Evaluation metrics for counting (testing stage): We evaluate the
performance of the CNN models by comparing the mean absolute value
(MAE) obtained from the models trained on the original set (the O-models)
and the models trained on the augmented set (the A-models). As our tasks
consider both counting and classification, we report three loss values for
different purposes; MAE for counting and classification purposes (MAECC),
MAE for the count-only purpose (MAECO), and MAE for evaluating mis-
classifications (MAEMC). Each of these three loss functions is explained
below.

MAECC: Given n classes and m test instances, MAECC for counting and
classification is calculated as:

MAECC =
1

n ·m

n∑
i=1

m∑
k=1

|yki − ŷ
k
i | (5)

Where yki is the number of fruits in the k-th test image of class i and
0 otherwise, and ŷki denotes the predicted values for the corresponding
image.

MAECO: We also want to evaluate the models by only considering the
number of fruits of the correct class (without considering the other wrongly
detected fruits). MAECO is calculated as:
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MAECO =
1

m

m∑
k=1

|ykc − ŷ
k
c | (6)

Where c is the class of the k-th image in the test set.

MAEMC: To evaluate the performance of the model when considering only
misclassified fruits, MAEMC is calculated as:

MAEMC =
1

(n− 1) ·m

n∑
i=1,
i 6=c

m∑
k=1

|yki − ŷ
k
i | (7)

Table 8 shows some examples of possible image content, the corresponding
target and predicted counts and the values for the three loss functions.

Table 8: Examples of the target and predicted outputs and the values of the three
loss functions for a single example in the testing stage.

Images
Count and classification Count only Misclassification

target predicted MAECC target predicted MAECO target predicted MAEMC

5 apples {5,0,0,0,0} {0,0,0,5,0} 2.00 {5} {0} 5.00 {0,0,0,0} {0,0,5,0} 1.25
8 lemons {0,0,8,0,0} {0,4,2,0,0} 2.00 {8} {2} 6.00 {0,0,0,0} {0,4,0,0} 1.00
7 pears {0,0,0,7,0} {0,3,6,0,0} 3.20 {7} {0} 7.00 {0,0,0,0} {0,3,6,0} 2.25

4.2.4.2 Detection-based counting:

Similar to regression-based counting, there are two stages for detection-
based counting: the training and the testing stage. We train two CNN
object-detection architectures: Faster R-CNN (Ren et al., 2015), and SSD-
MobileNet (Howard et al., 2017) for performing fruit detection and apply
the CNN models to detect and count the fruits on the test images.

Faster R-CNN is a state-of-the-art object-detection architecture, which
was developed based on the Region-based Convolutional Neural Network
(R-CNN) (Girshick et al., 2015) and Fast R-CNN (Girshick, 2015). It con-
sists of two networks: (1) a region proposal network (RPN) for generating
region proposals or regions of interest (ROI), and (2) a convolutional
network for classifying the regions of the image into objects and refining
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the bounding box corresponding to each proposal. We used the pre-trained
network for the MS-COCO (Lin et al., 2014) dataset to fine-tune Faster
R-CNN for detection-based counting.

While Faster R-CNN uses a region proposal network to classify objects,
Single Shot Multibox Detector (SSD) (Liu et al., 2016) uses VGG-16 as
a backbone network to extract feature maps of different resolutions and
applies convolution filters to detect objects. Each cell of the higher feature
maps uses a larger area of the image for detecting large objects whereas
the smaller feature maps can be used for detecting smaller objects. SSD-
MobileNet (Howard et al., 2017) is an adaptive version of the original
SSD architecture using the MobileNet network leading to a light-weight
model and has been shown to achieve a similar detection accuracy as
VGG-16 (Huang et al., 2017). For the detection-based counting task, we
used fine-tuning on the network trained on the MS-COCO dataset to train
SSD-MobileNet.

We train the CNN models of Faster R-CNN and SSD-MobileNet using
either the original or augmented training set of the FTF dataset. Then we
evaluate the models on the test set. For each test image, the models predict
the bounding boxes of the detected fruits and the confidence of each
detected box. We count the number of detected fruits (using a confidence
threshold of 0.6) and evaluate the performances of the detection-based
counting models by using the same three loss functions used for the
regression-based counting approach.

4.3 Results
We train CNNs for regression-based counting and detection-based counting
on the original and the augmented training set of the FTF dataset. Then
we compare the performance between the models trained on the original
set (the O-models) and the models trained on the augmented set (the A-
models) by testing the models on the test images. This section reports the
results of the regression-based counting and the detection-based counting
approaches.
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Table 9: Performance of different CNNs (average loss and standard deviation) for
regression-based counting on the test set. All models were trained on
the original and the augmented training set of the FTF dataset using five-
fold cross validation. The bold numbers indicate significant differences
between the loss values obtained by the two models (p < 0.05).

CNNs
MAECC MAECO MAEMC

O-models A-models O-models A-models O-models A-models
Resnet50-Scratch 0.72 +− 0.04 0.51 +− 0.02 3.10 +− 0.29 1.93 +− 0.07 0.12 +− 0.04 0.15 +− 0.01
Resnet50-Fine-tuned 0.38 +− 0.03 0.26 +− 0.02 1.28 +− 0.11 1.07 +− 0.09 0.15 +− 0.01 0.05 +− 0.01
Inception-V3-Scratch 0.60 +− 0.03 0.51 +− 0.02 2.40 +− 0.21 1.91 +− 0.10 0.15 +− 0.03 0.16 +− 0.01
Inception-V3-Fine-tuned 0.34 +− 0.03 0.27 +− 0.03 1.35 +− 0.11 1.12 +− 0.10 0.09 +− 0.01 0.03 +− 0.02

4.3.1 Regression-based Counting Results

Table 9 shows the performance of the O-models and the A-models for
regression-based counting obtained from training ResNet50 and Inception-
V3 with both scratch and fine-tuned models.

The MAECC values indicate that all A-models perform significantly better
than the O-models with a 15% − 31% improvement (e.g., 0.26 vs 0.38).
Scratch ResNet50 and fine-tuned ResNet50 profit most from training on
the augmented set with an improvement of 29% and 31%, respectively.
The highest performance (the lowest average testing error) was achieved
by the A-model trained by fine-tuning ResNet50 with MAECC = 0.26.

When considering MAECO, all A-models also obtain significantly better
performances than the O-models. Scratch ResNet50 profits the most from
training on the augmented images with a 38% improvement (3.1 to 1.93).
The best performing model is the A-model+ResNet50 fine-tuned with
MAECO = 1.07.

For MAEMC, which considers the misclassification predictions, the fine-
tuned versions of both deep learning architectures profit a lot from training
on the augmented set with a loss improvement of 67%. For the scratch
versions, the A-models perform similarly to the O-models.

Figure 11 shows some example images from the test set, the ground
truths, and the predicted labels obtained from training Fine-tuned-ResNet50
on the original and the augmented training set of the FTF dataset.
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(a) (b) (c)

[G] {0,0,0,11,0} {0,0,0,0,9} {0,1,0,0,0}
[O] {0,0,0,6,0} {0,0,0,0,9} {0,1,0,0,1}
[A] {0,0,0,11,0} {0,0,0,0,10} {0,1,0,0,1}

Figure 11: Examples of test images, ground truths and predicted outputs obtained
from regression-based counting using the Fine-tuned-ResNet50 archi-
tecture. (a) the A-model performs better, (b) the O-model performs
better, and (c) Misclassified prediction. The [G], [O], and [A] symbols
denote the ground truths, predicted labels from the O-model, and
predicted labels from the A-model, respectively. The bold numbers in
the predicted labels show wrong predicted values.

There are some wrong counts and misclassified images due to different
reasons: extensive shading effects, extra objects in the images, a high
similarity between fruits and leaves, the occlusion or truncation of some
fruits, the similarity among different fruits and possible dissimilarity within
the same fruit (i.e., green and ripe fruits or round and oval shapes of pears),
which can confuse the CNN models.

4.3.2 Detection-based Counting Results

In this subsection, we report the performances of the O-models and the A-
models for the detection-based counting approach obtained from training
Faster R-CNN and SSD-MobileNet. Table 10 shows the detection-based
counting results.

For all loss functions, there are no significant differences between the
A-models and the O-models. This shows that the fruit data-augmentation
method is not useful when training the object-detection algorithms Faster
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R-CNN and SSD. The reason is that no new fruits (objects) with different
appearances are introduced in the images, except for slight differences in
scale and rotation. Therefore, the detection algorithm can either locate a
specific instance of a fruit or not. The FDA method can therefore only be
helpful to make more challenging images with more occlusion, but this
does not seem to aid counting performance.

Table 10: Performances of different detection models (average loss and standard
deviation) for the detection-based counting methods on the test set. All
models were trained on the original and the augmented training set
of the FTF dataset using five-fold cross validation. Note that there are
no significant differences between the results of the O-models and the
A-models (p < 0.05).

Object Detection
MAECC MAECO MAEMC

O-models A-models O-models A-models O-models A-models
Faster R-CNN 0.22 +− 0.03 0.21 +− 0.03 0.62 +− 0.11 0.67 +− 0.13 0.12 +− 0.02 0.10 +− 0.02
SSD-MobileNet 0.34 +− 0.07 0.35 +− 0.06 1.38 +− 0.34 1.35 +− 0.26 0.08 +− 0.02 0.10 +− 0.02

We can also observe that Faster R-CNN performs much better than SSD
with MobileNet. This may be because MobileNet is a light-weight CNN,
but another reason could be that for this dataset, Faster R-CNN is more
accurate.

When we compare the results of the detection-based counting ap-
proaches to the regression-based counting approaches, we observe that
the results of the Faster R-CNN counting approach are better than the
results of the regression-based counting approaches. The only exception
to this is that the loss function of the misclassified fruits is lower for the
regression-based counting methods when fine-tuned models are used with
the augmented dataset. On the other hand, SSD-MobileNet is significantly
outperformed by the regression-based approaches when the CNNs are
fine-tuned on the augmented dataset.

Figure 12 shows some examples of the test images obtained from train-
ing by Faster R-CNN on the original and the augmented set of the FTF
dataset. We presented two groups of example images: (a) when the O-
model performs better than the A-model, and (b) when the A-model
performs better than the O-model.
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(a) The O-model (top row) performs better

(b) The A-model (bottom row) performs better

Figure 12: Example of test images obtained from training by Faster R-CNN on the
original and the augmented set of the FTF dataset. (a) the O-model
performs better than the A-model, and (b) the A-model performs
better than the O-model. Some example images show misclassified
detection. For each sub-figure, the top row shows the results from the
O-model, the bottom row shows the results from the A-model.

4.4 Conclusion
In this chapter, we researched the usefulness of performing data augmen-
tation for counting fruits. The proposed method adds segmented objects
(fruits) to existing images and has as advantage that novel labels (counts
or bounding boxes) are exactly computed. We also created a novel dataset
consisting of images consisting of between 1 and 15 fruits of five differ-
ent fruit types. For the counting task, we compared two widely different



4.4 C O N C L U S I O N 59

approaches: a holistic regression-based approach and a detection-based
approach. For both approaches we used different convolutional neural
networks or object-detection algorithms.

The results show that the fruit data-augmentation method is very helpful
for the regression-based approaches. These methods directly predict the
total count based on the entire image and profit from the new images
which both look different and have higher total counts (which makes
the problem more difficult). The performances of the detection-based
algorithms did not improve by using the data-augmentation method. This
can be explained because no new differently looking fruits are added and
therefore locally no new variances are introduced.

Although the best detection-based counting approach (Faster R-CNN)
outperforms the regression-based approaches, it requires a human to
manually draw bounding boxes around each fruit in the training set. This
is much more time-intensive than only labeling an image with the total
count. Furthermore, SSD-MobileNet was outperformed by the regression-
based counting approaches when data augmentation was used together
with pre-trained CNNs.

In future work, we are planning to work on plant-disease detection and
will study different data-augmentation methods to deal with the limited
amount of training images for diseased plants.
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O N E - V S - O N E C L A S S I F I C AT I O N F O R D E E P N E U R A L
N E T W O R K S

For performing multi-class classification, deep neural networks almost
always employ a One-vs-All (OvA) classification scheme with as many
output units as there are classes in a dataset. The problem of this ap-
proach is that each output unit requires a complex decision boundary
to separate examples from one class from all other examples. In this
chapter, we propose a novel One-vs-One (OvO) classification scheme for
deep neural networks that trains each output unit to distinguish between
a specific pair of classes. This method increases the number of output
units compared to the One-vs-All classification scheme but makes learn-
ing correct decision boundaries much easier. In addition to changing the
neural network architecture, we changed the loss function, created a code
matrix to transform the one-hot encoding to a new label encoding, and
changed the method for classifying examples. To analyze the advantages
of the proposed method, we compared the One-vs-One and One-vs-All
classification methods on three plant recognition datasets (including a
novel dataset that we created) and a dataset with images of different
monkey species using two deep architectures. The two deep convolutional
neural network (CNN) architectures, Inception-V3 and ResNet-50, are
trained from scratch or pre-trained weights. The results show that the
One-vs-One classification method outperforms the One-vs-All method on
all four datasets when training the CNNs from scratch. However, when
using the two classification schemes for fine-tuning pre-trained CNNs, the
One-vs-All method leads to the best performances, which is presumably
because the CNNs had been pre-trained using the One-vs-All scheme.

61
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5.1 Introduction
Convolutional neural networks (CNNs) have obtained excellent results
for many different pattern recognition problems (Schmidhuber, 2015;
LeCun, Bengio, and Hinton, 2015). Most image recognition problems
require the CNN to solve a multi-class classification problem. Whereas in
the machine learning literature, different approaches have been proposed
for dealing with multiple classes (Aly, 2005), in deep learning, the One-
vs-All classification scheme is almost universally used. The problem of this
method is that decision boundaries need to be learned that separate the
examples of each class from examples of all other classes. Especially if
images of different classes resemble each other quite a lot, learning such
decision boundaries can be very complicated. Therefore, we propose a
novel One-vs-One classification scheme for training CNNs in which each
output unit only needs to learn to distinguish between examples of two
different classes. This should make training the CNN easier and lead to
better recognition performance.

Multi-class classification in machine learning. The best-known meth-
ods to deal with multi-class classification tasks are One-vs-All (OvA) clas-
sification and One-vs-One (OvO) classification (Alpaydin, 2014). Other
approaches include One-class classification (Tax, 2001; Tao Ban and Abe,
2006), hierarchical methods (Kumar, Ghosh, and Crawford, 2002; Vural
and Dy, 2004), and error-correcting output codes (Dietterich and Bakiri,
1995). One-vs-All (OvA) classification is the most commonly used method
for dealing with multi-class problems. In this classification scheme, multi-
ple binary classifiers are trained to distinguish examples from one class
from all other examples. When there are K classes, the OvA scheme trains
K different classifiers. An advantage of this method is that machine learn-
ing algorithms that were designed for binary classification can be easily
adapted in this way to deal with multi-class classification problems. A dis-
advantage is that the dataset on which each classifier is trained becomes
imbalanced because there are many more negative examples than positive
ones for each classifier.
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The One-vs-One (OvO) classification method has also regularly been
used for training particular machine learning algorithms such as support
vector machines (Allwein, Schapire, and Singer, 2001; Galar et al., 2015;
Zhang et al., 2017) or other classifiers (Galar et al., 2011). In the OvO
scheme, each binary classifier is trained to discriminate between examples
of one class and examples belonging to one other class. Therefore, if there
are K classes, the OvO scheme requires training and storing K(K− 1)/2

different binary classifiers, which can be seen as a disadvantage when K
is large. The authors in (Rocha and Goldenstein, 2014) described several
methods to cope with a large set of base learners for OvO. Furthermore,
different algorithms have been proposed to improve the OvO scheme
(Liu, Bi, and Fan, 2017; Songsiri, Cherkassky, and Kijsirikul, 2018). An
advantage of the OvO scheme is that the datasets of individual classifiers
are balanced when the entire dataset is balanced. Comparisons between
using the OvO scheme and the OvA scheme have shown that OvO is better
for training support vector machines (Allwein, Schapire, and Singer, 2001;
Chih-Wei Hsu and Chih-Jen Lin, 2002) and several other classifiers (Galar
et al., 2011).

Multi-class classification in deep neural networks. When deep neu-
ral networks are used for multi-class classification problems, the output
layer almost always uses a softmax function and one output unit for each
different class. This is therefore a One-vs-All classification scheme, al-
though the output units share the same hidden layers. Attribute learning
(Farhadi et al., 2009; He and Schomaker, 2018), in which different at-
tributes are predicted, and their combination is used to infer a class, is
another promising way to deal with multi-class learning but may require
substantially more labeling effort.

Contributions of this chapter. We propose a novel One-vs-One clas-
sification method for deep neural networks. The proposed architecture
comprises an output layer with K(K − 1)/2 output units and a shared
feature learning part. Each output is trained to distinguish between inputs
of two classes and be indifferent to examples of other classes. To construct
the OvO classification scheme, we devised three steps: 1) Creating a code
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matrix to transform the one-hot encoding to a new label encoding, 2)
Changing the output layer and the loss function, and 3) Changing the
method to classify new (test) examples.

This OvO scheme has to the best of our knowledge not been proposed
before for deep neural networks. We only found one related paper that
describes an OvO scheme for shallow neural networks, for which K(K−

1)/2 different neural networks are trained and stored (Ou and Murphey,
2007). The advantages of our proposed OvO method compared to that
more traditional OvO scheme are that we only need to train and store
one deep neural network, and our architecture may benefit from positive
knowledge transfer when training multiple output units together.

In our experiments, we use three different plant datasets (including a
novel dataset called Tropic) and a dataset of different types of monkeys.
Using computer vision techniques for classifying plant images plays a
vital role in agriculture, monitoring the environment, and automatic plant
detection systems (Wang, Liang, and Guo, 2014). Although much research
has already been done on recognizing plant images, it is still a difficult
and challenging task due to intra-class variations, inter-class similarities,
and complex backgrounds (Guru, Sharath, and Manjunath, 2010; Fuentes
et al., 2017).

We also use a different dataset consisting of types of monkeys to examine
if the results on the plant recognition problems generalize to a different
fine-grained species classification problem. Furthermore, we performed
experiments with an imbalanced variant of the monkey dataset to study
if the OvO scheme can better handle class imbalances. For classifying
the image data, two deep CNNs are used, Inception-V3 (Szegedy et al.,
2016) and ResNet-50 (He et al., 2016), which are trained from scratch
or with fine-tuning from pre-trained weights. Finally, experiments were
performed with different amounts of training images and classes from the
four datasets using sub-sampling, to study the impact of smaller or larger
datasets on the results obtained with the OvO and OvA schemes.

Chapter Outline. The rest of this chapter is organized as follows. Sec-
tion 5.2 describes and theoretically compares the One-vs-One and One-vs-
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All classification methods for deep neural networks. Section 5.3 describes
the plant datasets, the monkey dataset, and the data-augmentation meth-
ods. The experimental setup is presented in Section 5.4, after which
Section 5.5 presents and discusses the results. Section 5.6 concludes the
chapter and describes directions for future work.

5.2 A Primer on One-vs-All and One-vs-One
Classification

In this section, we explain the two classification schemes (One-vs-All and
One-vs-One) for multi-class classification with deep neural networks. Then,
we present a theoretical analysis of the advantages of the One-vs-One
scheme.

5.2.1 One-vs-All Classification

In multi-class classification, each example belongs to precisely one class.
Therefore a dataset is annotated with the correct class label using a one-hot
target output vector containing zeros, except for the target class, which has
a value of one. The goal is to learn a mapping between inputs and outputs
so that the correct class obtains the highest activation and, preferably, is
the only one that becomes activated after propagating the inputs to the
outputs.

One-vs-All (OvA) classification involves training K different binary clas-
sifiers (output units), each designed to discriminate an instance of a given
class relative to all other classes (Rifkin and Klautau, 2004). To do this, a
softmax activation function is used in the output layer, and the weights
of the deep neural network are optimized using the cross-entropy loss
function and a particular optimizer.

The categorical cross-entropy loss JOvA for a single training example is:

JOvA = −

K∑
i=1

yi log(ŷi) (8)
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Where K denotes the number of classes, yi is defined as the target value
(0 or 1) for a given class i, and ŷi denotes the probability assigned by the
network that class i is the correct one. To compute these probabilities, the
output values of the network are given to the softmax activation function:

ŷi =
eoi∑K
j=1 e

oj
(9)

Where oi represents the output value for class i, which is computed by
summing the weighted values passed from the final hidden layer. Note
that this final summation uses a weight vector for each class and therefore
the activations of the final hidden layer are linearly combined to compute
the oi values. For testing purposes on unseen examples, the predicted
output class C is simply computed using:

C = argmax
i

ŷi (10)

5.2.2 The Proposed One-vs-One Approach

In this subsection, we explain the novel One-vs-One (OvO) classification
scheme for traning deep neural networks. As mentioned in the introduc-
tion, OvO classification has been used successfully for different machine
learning algorithms such as support vector machines. This classification
scheme has also been used for training neural networks Ou and Mur-
phey, 2007, for which different (shallow) neural networks were trained
separately for each pair of classes. Therefore, that approach leads to the
necessity of training many neural networks and no possibility of sharing
weights for solving multiple related pattern recognition problems. We
present a novel OvO classification scheme that only requires to train a
single (deep) neural network. This has as advantages that the method
requires less storage space, computational time and can benefit from
knowledge transfer and multi-task learning. To construct the OvO clas-
sification scheme, we devised three steps: 1) Creating a code matrix, 2)
Changing the output layer and the loss function, and 3) Changing the
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method to classify new (test) examples. We will explain these steps in
detail below.

Creating the OvO code matrix. In OvO classification, instead of using
a one-hot target vector that assigns a one to the target class and zeros to
all other classes, we need to construct a method that allows for pairwise
classification. Therefore, instead of using K outputs where K is the number
of classes, we need to construct a target vector consisting of L = K(K−1)/2

values. We do this by constructing a code matrix, which converts the one-
hot target vector to the target values for the L outputs. The output units
in the deep neural network represent binary classifiers with outputs in
the bound [-1,1]. The target values for these outputs have values -1, 0,
or 1. Here, the value 0 denotes that the output should be indifferent to
both classes. For example, when an output unit needs to distinguish cats
from dogs, and the training image shows a zebra, the target value for that
output unit would be 0. The code matrix Mc has a dimension of K× L.
The arrangement of the code matrix entries uses the principle of pairwise
separation of classes Ci and Cj, given that i < j (Alpaydin, 2014).

It is easiest to explain the code matrix using an example. Suppose we
have a dataset with 5 classes, K = 5, so that the number of output units
L = (5× 4/2) = 10. For this example, the code matrix is defined as:

Mc =



1 1 1 1 0 0 0 0 0 0

−1 0 0 0 1 1 1 0 0 0

0 −1 0 0 −1 0 0 1 1 0

0 0 −1 0 0 −1 0 −1 0 1

0 0 0 −1 0 0 −1 0 −1 −1


When we have the one-hot target vector y denoting the correct class,

we can multiply it with the code matrix to obtain the target outputs for the
different output units. For example when yT = (0 0 0 1 0), which denotes
that class 4 is the correct one for a training example, then we can compute
the target vector for OvO classification by: yTovo = yTMc = (0 0 -1 0 0
-1 0 -1 0 1), which is simply a copy of the 4th row of the code matrix. In
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this example, the 3rd entry in the obtained target vector denotes that for
the pairwise classification between classes 1 and 4, the target class is 4, so
that the 3rd output unit should output a value of -1.

New output layer and loss function. As explained above, the OvO
classification method requires more output units than OvA classification.
Although this may mean the OvO scheme is complicated to use when there
are a vast number of classes, many datasets do not have more than 50
classes, and in the experiments, we will focus on such (smaller) datasets.
To allow the network to output pairwise classifications, we simply construct
a deep model with L = K(K−1)/2 output units. We cannot use the softmax
activation function anymore since that would assign probabilities to all
output units, which add up to 1. Furthermore, the novel target output
vector contains numbers between -1 and 1. Therefore, in our system, we
use the hyperbolic tangent (tanh) activation function for the L output
units, defined as:

ŷi =
eoi − e−oi

eoi + e−oi
(11)

Although this network could be trained with the mean squared error
(MSE) loss function, it is well-known that training a neural network for a
classification problem can be better done with a cross-entropy loss function
Goodfellow, Bengio, and Courville, 2016. Therefore, we customized the
binary cross-entropy loss function, for which the target values yOvOi and
output values ŷi are first scaled to the range [0,1] using:

yOvO
′

i =
yOvOi + 1

2
, y ′

i =
ŷi + 1

2
(12)

For dealing with numerical problems, the probability values of y ′ are
clipped to lie in the range of [0.00001, 0.99999]. Now, the multi-output
binary cross-entropy loss JOvO for an example is computed with:

JOvO = −
1

L

L∑
i=1

(yOvO
′

i × log(y ′
i) + (1− yOvO

′
i )× log(1− y ′

i)) (13)
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Where yOvO
′

i denotes the new target value for a given class i. Note that
this loss function is also used for multi-label classification, where multiple
outputs can be activated given an input pattern. The difference in our
approach is that we include don’t care target outputs as well, which need
to be mapped to the probability 0.5 or a tanh-activation of 0 in the output
layer to minimize the loss. Another choice would be to not train on such
outputs at all, but that would provide less information to the network.
Some preliminary experiments showed that better results were obtained
by also training on target values of zero.

Classifying new examples. To predict the class label C for an input
pattern x, the input is first propagated to compute the L outputs ŷi. Then,
a decoding scheme is used so that the votes of all binary OvO outputs
are combined. For this, the same code matrix Mc is used to compute the
summed class output vector z consisting of K elements:

z =Mc ŷ (14)

Note that this means that output vector should be similar to the corre-
sponding values in the specific row in the code matrix, although don’t care
values are not important to get a large summed vote. Finally, the predicted
class is selected by C = argmaxi zi. The schematic representation for the
deep neural network (Inception-V3) combined with the two classification
methods is shown in Figure 13a and Figure 13b.

5.2.3 Analysis of the Advantages of One-vs-One Classification

In this subsection, we theoretically compare the One-vs-One and One-
vs-All classification schemes. In our analysis, we will use simple binary
classifiers for separating examples of one class from examples of one
other class or examples of all other classes. Note that even in deep neu-
ral networks, the final output activations are usually computed using a
weight matrix that connects the final hidden layer with each output unit.
Therefore, the deep neural networks need to learn to map input patterns
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(a) One-vs-All
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Figure 13: The pipeline of the CNN showing a compact representation of
Inception-V3 combined with the two classification systems; (a) One-
vs-All (b) Multi-class One-vs-One. Note that the (...) represents several
chains of neural network layers.

to linearly separable final hidden-layer activations. Each classifier first
computes its output oi using:

oi = wT
i · h + bi (15)

Where bi denotes the bias and wi the weight vector for output i, and
h denotes the vector containing all activations of the hidden units that
are connected to the outputs. The OvA models use the softmax activation
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function to compute the class probabilities ŷi = eoi∑
j e
oj and the predicted

class is given by C = argmaxi ŷi.
For simplicity reasons, in our analysis, the OvO models use a sigmoid

activation function to discriminate between each pair of classes: fij =
σ(oij), and we assume that fij = 1− fji for all i 6= j and zero otherwise.
Furthermore, we do not require these OvO models to output values close to
0.5 for different classes than the ones that are separated by the model. Note
that the tanh activation function is a scaled sigmoid: tanh(x) = 2σ(2x)−1,
so this does not impact our analysis. The predicted class for this OvO
scheme on a test example is given by C = argmaxi

∑
j fij.

We assume a dataset S = {(x1,C1), . . . , (xn,Cn)}, where Ci denotes the
number of the correct output class for input xi. First, we analyze if the OvO
scheme is more powerful than the OvA scheme when separating different
classes, for which we define multi-class separability for OvA and OvO.

Definition: OvA separability. A mapping h = g(x, θ) separates all
training examples with the OvA scheme, if there exist weight vectors
wi and biases bi such that argmaxi ŷi = argmaxiwT

i h + bi = C for all
(x,C) ∈ S.

Definition: OvO separability. A mapping h = g(x, θ) separates all
training examples with the OvO scheme, if there exist vectors wij and
scalars bij s.t. argmaxi

∑
j fij = argmaxi

∑
j σ(w

T
ijh + bij) = C for all

(x,C) ∈ S.

(a) Simple 3 classes. (b) Complex 3 classes.

A  A
A A

B  B
B

c  c
B c c

D
D D E

E
F F

F
G G H H

(c) Complex 8 classes.

Figure 14: Three different multi-class problems of different complexities.

We will first give an example with three linearly separable classes so
that both the OvA and OvO scheme construct three decision boundaries,



5.2 A P R I M E R O N O N E -V S - A L L A N D O N E -V S - O N E C L A S S I F I C AT I O N 73

see Figure 14a. It should be clear that the three classes in Figure 14a are
linearly separable with OvA and OvO. The optimal decision boundaries
are illustrated in Figure 15a and Figure 15b.

?

?

?

(a) Separation with OvA. (b) Separation with OvO.

Figure 15: The optimal decision boundaries.

When we compare the decision boundaries for OvA and OvO, we observe
several differences. First, the decision boundaries are placed in different
ways. E.g., the red and green classes are separated by OvO by a vertical
line in the middle. Second, with the OvO scheme, there is always one class
that wins against all other classes for each input. For the OvA scheme,
there are possible inputs for which there is no unique winner, such as
points in the bottom left area where both the blue circle class and the
red square class may have high outputs. The predicted class in such areas
would depend on the exact weight vectors and bias values.

Now, let us examine the more complex problem shown in Figure 14b.
The OvA scheme will have difficulties to learn to separate the blue circles
from the examples of the other two classes. Although learning the correct
decision boundaries is complicated for the OvA scheme, it is still possible.
The blue-class model could have a higher bias value than the other models
and be less sensitive to the input, and the other two classes could learn
decision boundaries based on the x-axis. The OvO scheme can easily solve
this problem, however, because linear divisions between each pair of
classes are not hard to construct.

If we make the problem even more complex and add more classes, such
as in Figure 14c, it seems impossible for the OvA scheme to separate all
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classes. However, also in this case the OvA scheme can linearly separate
the classes, which we will prove below. It should be noted that it is much
easier for the OvO scheme to handle such a dataset.

Now, suppose we have a dataset with K classes and one input dimension
h, in which each class is linearly separable from each other class using
the OvO scheme. Figure 16 shows an example of such a problem with 4
classes A, B, C, and D. Note that for simplicity, we only drew a single data
point for each class, but the analysis can be easily extended to multiple
data points, as long as they lie close together.

A
0

B DC
1 2 3 h

Figure 16: 1D-Problem with 4 classes.

We now make the following proposition: Proposition 1: If all pairs of
classes are linearly separable (in one dimension), then the OvA scheme
can also linearly separate all classes, but requires larger weight values to
do this than the OvO scheme.

Proof of proposition 1: We assume we have K points h1,h2, . . . ,hK
and K OvA models fi(h) = wih + bi. We require that each model fi
outputs the largest value on point hi: fi(hi) > fj(hi) + R for all i, j ∈
{1, 2, . . . ,K}; i 6= j. Here R is a positive constant that ensures the differences
between model outputs are large enough so that the softmax function
would output a value close to 1 for the winning class (e.g. R = 3).

It is not difficult to develop an algorithm that constructs the parameters
wi, bi for all models fi such that the above requirement holds. Let’s look
at the example of Figure 16 again. In this example class A belongs to point
h = 0, B to h = 1, C to h = 2, and D to h = 3. We have four models
fz(h) = wzh+ bz, where z is the label (A,B,C, or D). For separating A
and B, we require:

fA(0) = fB(0) + R and fB(1) = fA(1) + R (16)

There are multiple solutions, let’s say we select:

fA(h) = −Rh+ 0.5R and fB(h) = Rh− 0.5R (17)
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It is easy to verify that the previous requirement is fulfilled with these two
models. Now, for class C, we require:

fB(1) = fC(1) + R and fC(2) = fB(2) + R (18)

From which follows: fC(h) = 3Rh− 3.5R. When we continue this construc-
tion process, we also derive: fD(h) = 5Rh− 8.5R.

We observe that the function maxi fi is piece-wise linear convex, which
is illustrated for the models for A,B, and C in Figure 17a.

A
0

B DC
1 2 3 h

(a) Solution of OvA.

A
0

B DC
2 3 h

(b) Solution of OvO.

Figure 17: The solutions for the 1D problem.

It is easy to show that the algorithm can be generalized to multiple input
dimensions. In the 1D case, we observed that the weights increase by 2R
for each additional model, while the bias values become very negative.
This finally leads to substantial weight values when there are many classes,
and consequently, will decrease the generalization power. The weight-
increase factor for each additional model depends on other problem-
specific settings, such as the distance between examples in feature space δ
(in our example δ = 1), and the number of dimensions of the final hidden
layer, H.

When dealing with H dimensions, the increase of the single weight can
be spread over the H dimensions, so the increase of weights is 2RH for each
additional class. Therefore, projecting inputs to many hidden dimensions
helps to have smaller weights, but many hidden units may also worsen
generalization. When examples of different classes are closer together,
the margin decreases, and the weight increase has to be multiplied with
1
δ . This also means that unbounded activation functions (e.g., ReLU) are
useful for obtaining smaller weights in the final classification layer. When
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we take all these factors together, the OvA scheme’s largest weight would
be of the order KRδH . E.g., for 50 classes (K = 50), δ = 0.1, R = 3, and
H = 100, the largest weights in the final classification layer could be
around 15.

Now, examine how the OvO scheme solves the above problem. In this
scheme, we use models of the form fij(h) = wijh + bij. For the first
classes A and B, we require: fAB(0) = R and fAB(1) = −R to ensure that
after applying the sigmoid function, the model incurs a small loss.

It is easy to see that for fAB(h) the weight wAB equals −2R, similar to
the OvA scheme. However, the different models do not depend on each
other, and therefore the weights do not need to increase continuously.
Furthermore, models that separate examples that are farther away from
each other, such as fAD(h), can have much smaller weight values. The
solution of the OvO scheme to the one-dimensional problem is illustrated
in Figure 17b.

This concludes our proof of proposition 1. Both classification schemes
can be used to separate the data projected to one dimension as long as
examples of different classes lie close together, but the OvA model needs
much larger weights if there are many classes. Another problem with
the OvA scheme is that the different outputs heavily depend on each
other. When one binary OvA classifier is adapted, other outputs have to
be changed as well. Furthermore, when some outputs use large weight
vectors in the final layer, their errors can have a significant impact on
the training process. These two factors may increase instabilities of the
training process.

The learned representation can indeed make up for the problems of the
OvA scheme. For example, when the final hidden layer is very large, it is
easier to learn decision boundaries with OvA. However, this could lead
to strange generalization effects, as has also been shown in research on
adversarial examples Goodfellow, Bengio, and Courville, 2016. Further-
more, in the OvO scheme, outputs are affected by other outputs due to
the shared feature-learning part, but this dependence also occurs for the
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OvA models. To conclude, the OvO scheme has the following advantages
compared to the OvA scheme:

• The OvO scheme can have better generalization properties than
the OvA scheme because there is less need for large weight vectors
or a broad final feature representation, which is connected to the
classification layer.

• In the OvA scheme, each binary classifier (output) is much more
dependent on the other binary classifiers than in the OvO scheme,
which could increase problems with learning instabilities.

• The OvO scheme does not introduce artificial class imbalances,
whereas the OvA scheme does. If the dataset is balanced, the prob-
lem for each OvO classifier is balanced as well. For the OvA scheme,
the dataset for each independent classifier is imbalanced.

Finally, we want to mention that although in general the OvO scheme
requires training K(K− 1)/2 different classifiers and therefore could cost
much more training time than the OvA scheme, in our proposed archi-
tecture this is not the case. In the proposed OvO method, a single deep
network is used that is trained on each example in the same way as in the
OvA scheme. Only when there are very many classes (like thousands), the
OvO scheme would become complex to store and train.

5.3 Datasets and Data Augmentation
As mentioned in the introduction, plant image recognition systems have
many applications. Convolutional neural networks (CNNs) have obtained
remarkable results on different datasets for image-based plant classifi-
cation (Fuentes et al., 2017; Ubbens and Stavness, 2017; Cruz et al.,
2017; Ubbens et al., 2018). In Mohanty, Hughes, and Salathé, 2016, two
deep learning architectures, AlexNet and GoogLeNet, were trained on
the PlantVillage dataset to detect plant leaves that contain diseases. The
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work described in Too et al., 2019 compared instances of Inception-V4,
various instances of ResNet, and few other CNN models to classify diseases
in plant images. Some works have also applied several other techniques
to boost recognition performances, such as using different kinds of data
augmentation (Zhang et al., 2015a; Pawara et al., 2017a) and transfer
learning schemes (Douarre et al., 2018).

In this section, we briefly describe the three different plant datasets, the
monkey dataset, and the data augmentation methods used in our study.

5.3.1 Datasets

In this subsection, we describe the three plant datasets and the monkey
dataset used in the experiments. Figure 18 shows some example images
from the plant datasets.

5.3.1.1 AgrilPlant Dataset

The AgrilPlant dataset was introduced in (Pawara et al., 2017b). The
dataset contains 3,000 plant images with a uniformly distributed number
of images per class. It contains 10 classes: Apple, Banana, Grape, Jack-
fruit, Orange, Papaya, Persimmon, Pineapple, Sunflower, and Tulip. Most
of the images within this dataset contain variances in pose and object
backgrounds. The dataset images were split in the proportion of 20% used
for testing, and the remaining 80% of the images used for training.

5.3.1.2 Tropic Dataset

The Tropic dataset contains 20 classes of plants with a total of 5,276
images. Each of the classes contains a non-uniform distribution of im-
ages, varying from 221 to 371 images per class. The dataset contains the
following plants: Acacia, Ashoka, Bamboo, Banyan, Chinese wormwood,
Croton, Crown flower, Ervatamia, Golden shower, Hibiscus, Lady palm,
Lime, Mango, Manila tamarind, Poinsettia, Raspberry ice Bougainvillea,
Sanchezia, Umbrella tree, West Indian jasmine, and White plumeria. The
images were collected by us during the day using a DSLR camera. The
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Figure 18: Some example images from the three plant datasets for which we
show one image per class for some classes in the datasets. The first
row shows AgrilPlant images, the second row shows Tropic images,
and the last row shows Swedish leaf images.

data was collected from diverse locations in Northeastern Thailand. All
the images have similarities in illumination conditions but show different
plant parts (flowers, branches, fruits, leaves, or the whole tree) and back-
ground information such as sky, houses, and soil. We randomly split the
dataset in the ratio of 70% / 30% for the training and the testing set.

5.3.1.3 Swedish Dataset

The Swedish dataset (Söderkvist, 2001) contains 1,125 leaf images of 15
classes with 75 images per class. The leaf images were taken on a plain
background. We adopted the same dataset splits as in previous studies
using 25 randomly selected images per class for training and the rest of
the images for testing.

5.3.1.4 Monkey-10 Dataset

The Monkey-10 dataset 1 contains approximately 1,400 images and 10
classes, and each class corresponds to a different species of monkeys. Each
of the classes contains approximately 110 training images and 27 test
images. The dataset consists of the following monkey species: Mantled

1 https://www.kaggle.com/slothkong/10-monkey-species



80 O N E -V S - O N E C L A S S I F I C AT I O N F O R D E E P N E U R A L N E T W O R K S

Figure 19: Some example images from the Monkey-10 dataset for which we show
one image per class for all classes in the dataset.

howler, Patas monkey, Bald uakari, Japanese macaque, Pygmy marmoset,
White-headed capuchin, Silvery marmoset, Common squirrel monkey,
Black-headed night monkey, and Nilgiri langur. Figure 19 shows some
example images from the Monkey-10 dataset.

The Monkey-10 dataset was primarily used to observe if performance dif-
ferences between the OvO and OvA schemes generalize to a different kind
of fine-grained species dataset. Additionally, from the original Monkey-10
dataset, we randomly selected a non-uniform distribution of images from
the training set, which varies from 10 to 120 images per class to create
an imbalanced dataset. This dataset is called Imbalanced-Monkey-10 and
serves as a purpose to study if the OvO or OvA scheme can better handle
strongly imbalanced classes.

5.3.2 Data Augmentation Techniques

We applied three online data augmentation (DA) approaches during the
training of the CNNs. The data-augmentation operations involve horizontal
flipping, vertically shifting images up or down with random values with a
maximum of 10% of the image height, and horizontally shifting images
left or right with random values with a maximum of 10% of the image
width (where novel pixels are filled in using nearest pixel values). These
operation schemes were applied to all the training images of the datasets.
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The reason for using DA is to increase the size of the training dataset when
training the CNN models.

5.4 Experimental Setup
In this section, we present the different experimental setups in which
we subsample the total amount of images and classes from the three
plant datasets and the two monkey datasets. Afterwards we describe the
experimental parameters used for training the two CNNs, Inception-V3
and ResNet-50.

5.4.1 Dataset Sampling

This subsection describes two different forms of dataset sampling to obtain
more dataset subsets that will be used in the experiments:

1. Dataset subsets with fewer classes: In the AgrilPlant dataset, we ad-
ditionally considered 5 randomly selected classes from the original
dataset; this version of the dataset is called AgrilPlant5 while the orig-
inal dataset is called AgrilPlant10. For the Tropic dataset, we consid-
ered two additional subsets from the original dataset, which involves
the random selection of 5 or 10 classes from the original dataset.
Hence, we name the new and original datasets (Tropic5, Tropic10)
and Tropic20, respectively. Similar considerations were made on the
Swedish dataset for 5 and 10 randomly selected classes. Hence, this
results in the new subset variants; Swedish5 and Swedish10, while
the original dataset is called Swedish15.

2. Dataset subsets in which the original training image examples (100%)
were distributed into 10%, 20%, 50%, and 80% of the whole train-
ing set based on a random selection of the images. Table 11 shows
the number of images per class of the datasets after sub-sampling.
Note that the testing sets for the datasets were kept constant. Fur-
thermore, we provide notations for describing the datasets using:
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<dataset name><number of classes>::ts<train size>. For example,
Tropic20::ts10 denotes the Tropic dataset with 20 classes containing
10% of the training data.

The reason for performing experiments with the sub-sampling dataset
variations is to determine how the CNN architectures combined with either
the OvO or OvA classification system can deal with recognizing images
under different conditions. The primary goal is to assess the performance
variations of the two different classification schemes.

Table 11: Number of training images per class after sub-sampling the datasets.

Train size Dataset

(%) AgrilPlant Tropic Swedish Monkey Imbalanced

Monkey

10 24 15-26 2-3 10-12 1-12

20 48 31-52 5 21-24 2-24

50 120 77-130 12-13 52-61 5-61

80 192 124-207 20 84-98 8-98

100 240 155-259 25 105-120 10-120

5.4.2 Deep CNN Training Schemes

Deep neural network architectures consist of several chains of neural
network layers and operations: convolutional, normalization, non-linear
activation functions, pooling, fully-connected, and the final classification
layer. In this study, we perform experiments with architectures which use
inception modules (Inception-V3), and residual modules (ResNet-50). We
chose these deep CNN architectures, because they are well known state-
of-the-art architectures, but are based on different operations (inception
or residual modules).

We trained the CNN models with two training schemes using the scratch
or pre-trained version based on their use of random weights or pre-trained
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weights from the ImageNet dataset. Each of the training schemes employs
the previously described deep convolutional neural networks (Inception-
V3 and ResNet-50) combined with the OvA and OvO classification systems.
The hyper-parameters were optimized using several preliminary experi-
ments.

1. Scratch Experiments. The following experimental parameters were
used: the previously described CNNs were initialized with random
weights and trained for 200 epochs while optimizing the CNN loss
function with the Adam optimizer, a batch size of 16, and a learning
rate lr = 0.001. The lr decay uses a factor of 0.1 after every interval
of 50 epochs. The scratch experiments on all the datasets were run
within the computing time frame of [10− 130] minutes, depending
on the given dataset/subset.

2. Fine-tuning Experiments. The following experimental parameters
were used: the previously described CNNs were initialized with pre-
trained weights from the ImageNet dataset. These models are trained
for 100 epochs while optimizing the CNN loss function with the
Adam optimizer, a batch size of 16, and a learning rate lr = 0.0001.
The lr decay uses a factor of 0.1 after 50 epochs. The fine-tuning
experiments on all the datasets were run within the computing time
frame of [6− 66] minutes, depending on the given dataset/subset.

We used an NVIDIA V100 GPU with 28GB of memory for all experiments.

5.5 Results and Discussion
In this section, we present the classification performances of the two CNN
methods (Inception-V3 and ResNet-50) combined with the two classifi-
cation schemes (OvO and OvA) trained using the scratch or pre-trained
instances of the CNN models on the three plant datasets, the monkey
datasets, and some of the plant datasets without data augmentation on
the training sets.
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5.5.1 Results of Scratch-Inception-V3

We trained the scratch Inception-V3 CNN based on five-fold cross-validation.
The results obtained during the testing phase are reported in Table 12.

Table 12: Recognition performances (average accuracy and standard deviation)
of Scratch-Inception-V3 combined with the two classification meth-
ods. The bold numbers indicate significant differences between the
classification methods (p < 0.05).

(a) The AgrilPlant dataset

Train size AgrilPlant5 AgrilPlant10
(%) OvO OvA OvO OvA
10 77.13 +− 1.28 71.67 +− 2.67 77.80 +− 3.00 73.57 +− 1.47
20 85.47 +− 2.10 83.33 +− 3.47 86.97 +− 1.69 85.87 +− 1.57
50 92.40 +− 0.86 89.73 +− 1.19 94.87 +− 1.00 94.57 +− 1.23
80 94.47 +− 0.90 94.33 +− 0.53 96.47 +− 0.69 96.60 +− 0.73
100 94.93 +− 0.37 94.80 +− 1.02 96.90 +− 0.65 97.40 +− 0.67

(b) The Tropic dataset

Train size Tropic5 Tropic10 Tropic20
(%) OvO OvA OvO OvA OvO OvA
10 82.24 +− 1.91 78.76 +− 2.09 75.14 +− 2.73 70.46 +− 3.22 66.51 +− 4.72 65.93 +− 3.31
20 89.06 +− 1.55 89.40 +− 1.47 86.77 +− 1.14 83.43 +− 2.06 81.48 +− 4.52 80.57 +− 1.35
50 97.19 +− 0.66 95.74 +− 1.15 95.59 +− 1.28 94.78 +− 0.34 94.62 +− 1.67 94.47 +− 0.46
80 98.84 +− 0.53 98.02 +− 0.47 98.38 +− 0.70 97.42 +− 0.73 97.87 +− 0.34 97.21 +− 0.31
100 99.13 +− 0.51 98.30 +− 1.06 98.56 +− 0.46 98.54 +− 0.22 98.18 +− 0.96 98.03 +− 0.14

(c) The Swedish dataset

Train size Swedish5 Swedish10 Swedish15
(%) OvO OvA OvO OvA OvO OvA
10 71.60 +− 4.24 66.08 +− 3.01 79.52 +− 3.43 70.96 +− 4.19 72.91 +− 5.29 65.41 +− 3.32
20 86.40 +− 2.61 86.96 +− 4.36 91.84 +− 2.25 85.60 +− 3.90 88.73 +− 1.98 84.99 +− 2.71
50 98.40 +− 0.75 95.36 +− 2.63 97.36 +− 0.86 97.36 +− 0.96 95.71 +− 1.41 94.99 +− 1.85
80 99.36 +− 0.36 98.56 +− 0.61 99.20 +− 0.58 98.48 +− 0.39 98.19 +− 0.49 97.41 +− 0.75
100 99.76 +− 0.36 99.44 +− 0.67 99.48 +− 0.18 99.00 +− 0.51 98.59 +− 0.28 97.76 +− 0.45

1. Evaluation of the CNN on the AgrilPlant Dataset: from Table 12a,
we observe that training Scratch-Inception-V3 (CNN) combined
with OvO significantly outperforms the CNN combined with OvA
(p < 0.05) on 3 dataset subsets with a smaller training size. An-
other observation is that the CNN combined with OvO surpasses the
CNN combined with OvA on the AgrilPlant5::ts10 dataset with a
significant difference of ∼ 5.5%.



5.5 R E S U LT S A N D D I S C U S S I O N 85

2. Evaluation of the CNN on the Tropic Dataset: from Table 12b, we
observe that training Scratch-Inception-V3 combined with OvO sig-
nificantly outperforms the CNN combined with OvA (p < 0.05) on 6
dataset subsets.

3. Evaluation of the CNN on the Swedish Dataset: from Table 12c, we
observe that training the CNN combined with OvO significantly out-
performs the CNN combined with OvA (p < 0.05) on 8 datasets (sub-
sets or whole). Another observation is that the CNN combined with
OvO surpasses the CNN combined with OvA on the Swedish10::ts10
dataset with a significant difference of 8.5%.

5.5.2 Results of Scratch-ResNet-50

We trained the scratch ResNet-50 combined with the two classification
schemes using five-fold cross-validation. The results obtained during the
testing phase are reported in Table 13.

1. Evaluation of the CNN on the AgrilPlant Dataset: from Table 13a,
we observe that training Scratch-ResNet-50 combined with OvO
significantly outperforms the CNN combined with OvA on 4 smaller
subsets.

2. Evaluation of the CNN on the Tropic Dataset: from Table 13b, we
observe that training the CNN combined with OvO significantly
outperforms the CNN combined with OvA on 6 subsets of this dataset.
Another observation is that the CNN combined with OvO surpasses
the CNN combined with OvA on the Tropic10::ts{10,20} subsets
with a significant difference of ∼ 5%.

3. Evaluation of the CNN on the Swedish Dataset: from Table 13c, we
observe that training the CNN combined with OvO significantly out-
performs the CNN combined with OvA on 4 subsets of this dataset.
Furthermore, the CNN combined with OvO surpasses the CNN com-
bined with OvA on the Swedish10::ts10 dataset with a difference of
∼ 10%.
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Table 13: Recognition performances (average accuracy and standard deviation) of
Scratch-ResNet-50 combined with the two classification methods. The
bold numbers indicate significant differences between the classification
methods (p < 0.05).

(a) The AgrilPlant dataset

Train size AgrilPlant5 AgrilPlant10
(%) OvO OvA OvO OvA
10 77.53 +− 0.96 72.93 +− 3.85 76.23 +− 2.06 72.93 +− 2.04
20 85.40 +− 0.64 82.73 +− 2.29 86.03 +− 1.29 84.20 +− 1.91
50 91.47 +− 0.90 89.87 +− 0.77 93.13 +− 0.46 93.20 +− 0.83
80 93.53 +− 1.22 93.73 +− 1.50 96.00 +− 0.53 95.03 +− 1.19
100 94.33 +− 0.94 93.87 +− 2.06 96.10 +− 0.38 96.23 +− 0.85

(b) The Tropic dataset

Train size Tropic5 Tropic10 Tropic20
(%) OvO OvA OvO OvA OvO OvA
10 77.31 +− 1.05 73.59 +− 2.63 67.57 +− 3.44 62.38 +− 1.42 59.78 +− 2.05 59.59 +− 2.27
20 87.41 +− 3.72 83.35 +− 3.45 82.57 +− 1.75 77.85 +− 2.10 79.79 +− 0.72 76.61 +− 1.31
50 93.47 +− 2.48 91.19 +− 2.40 93.45 +− 1.20 93.09 +− 0.76 93.31 +− 0.61 93.11 +− 1.02
80 97.29 +− 1.35 96.23 +− 0.89 96.45 +− 1.20 96.43 +− 0.88 96.49 +− 0.48 95.70 +− 0.70
100 98.64 +− 0.82 97.48 +− 0.44 97.44 +− 0.42 97.10 +− 0.57 97.59 +− 0.23 96.80 +− 0.43

(c) The Swedish dataset

Train size Swedish5 Swedish10 Swedish15
(%) OvO OvA OvO OvA OvO OvA
10 75.20 +− 1.96 71.76 +− 1.95 73.52 +− 3.57 63.44 +− 1.99 66.11 +− 4.18 66.83 +− 2.49
20 86.80 +− 3.26 83.53 +− 1.61 82.32 +− 4.81 83.60 +− 2.53 84.05 +− 4.12 82.21 +− 1.81
50 96.08 +− 0.95 96.48 +− 1.34 95.56 +− 0.83 95.68 +− 0.99 93.31 +− 0.90 93.15 +− 1.20
80 98.24 +− 0.83 97.92 +− 0.91 98.00 +− 0.40 97.12 +− 0.46 96.19 +− 1.00 96.03 +− 0.61
100 98.96 +− 0.46 98.72 +− 0.52 98.40 +− 0.37 98.32 +− 0.23 97.28 +− 0.35 96.24 +− 0.94

5.5.3 Results of Fine-tuned Inception-V3

We trained the pre-trained Inception-V3 based on five-fold cross-validation.
The results obtained during the testing phase are shown in Table 14.

1. Evaluation of the CNN on the AgrilPlant Dataset: from Table 14a,
the results show that there are 3 subsets of this dataset where train-
ing the Fine-tuned-Inception-V3 combined with OvA significantly
outperforms the CNN combined with OvO.

2. Evaluation of the CNN on the Tropic Dataset: from Table 14b, we
observe that the CNN combined with OvA significantly outperforms
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Table 14: Recognition performances (average accuracy and standard deviation)
of Fine-tuned-Inception-V3 combined with the two classification meth-
ods. The bold numbers indicate significant differences between the
classification methods (p < 0.05).

(a) The AgrilPlant dataset

Train size AgrilPlant5 AgrilPlant10
(%) OvO OvA OvO OvA
10 88.67 +− 2.13 90.40 +− 2.42 92.13 +− 1.52 94.87 +− 0.88
20 92.27 +− 2.09 92.07 +− 1.86 94.47 +− 1.77 96.67 +− 0.59
50 96.20 +− 1.66 96.27 +− 1.14 97.13 +− 1.02 98.03 +− 0.77
80 96.27 +− 1.16 97.53 +− 0.69 97.93 +− 0.51 98.77 +− 0.57
100 97.00 +− 1.18 97.07 +− 1.23 98.07 +− 0.56 98.83 +− 0.53

(b) The Tropic dataset

Train size Tropic5 Tropic10 Tropic20
(%) OvO OvA OvO OvA OvO OvA
10 97.15 +− 1.72 96.61 +− 2.50 92.93 +− 1.21 94.60 +− 1.52 90.42 +− 2.88 93.60 +− 0.94
20 97.39 +− 1.22 98.74 +− 0.99 96.01 +− 0.98 98.25 +− 0.57 95.70 +− 0.36 96.67 +− 0.52
50 99.32 +− 0.32 99.47 +− 0.56 98.75 +− 0.27 99.53 +− 0.41 98.43 +− 0.21 99.20 +− 0.10
80 99.66 +− 0.13 99.61 +− 0.22 99.32 +− 0.23 99.79 +− 0.15 99.05 +− 0.35 99.46 +− 0.23
100 99.76 +− 0.24 99.81 +− 0.32 99.56 +− 0.22 99.87 +− 0.16 99.33 +− 0.09 99.68 +− 0.12

(c) The Swedish dataset

Train size Swedish5 Swedish10 Swedish15
(%) OvO OvA OvO OvA OvO OvA
10 94.88 +− 4.10 92.48 +− 4.23 84.56 +− 2.56 91.72 +− 4.44 87.52 +− 4.78 86.11 +− 2.04
20 97.44 +− 3.26 97.52 +− 3.06 97.68 +− 1.40 98.96 +− 0.71 95.55 +− 2.34 94.48 +− 3.33
50 99.68 +− 0.18 99.98 +− 0.04 99.72 +− 0.11 99.84 +− 0.17 99.23 +− 0.40 99.20 +− 0.21
80 99.92 +− 0.18 99.92 +− 0.18 99.76 +− 0.17 99.88 +− 0.11 99.60 +− 0.27 99.81 +− 0.20
100 99.92 +− 0.18 99.92 +− 0.18 99.92 +− 0.11 99.92 +− 0.18 99.79 +− 0.15 99.97 +− 0.06

the CNN combined with OvO on 8 subsets of the Tropic10 and
Tropic20 datasets.

3. Evaluation of the CNN on the Swedish Dataset: from Table 14c, we
observe that training the CNN combined with OvA significantly out-
performs the CNN combined with OvO on 3 subsets of this dataset.
Another observation is that the CNN combined with OvA surpasses
the CNN combined with OvO on the Swedish10::ts10 dataset with a
significant difference of ∼ 7%.
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Table 15: Recognition performances (average accuracy and standard deviation)
of Fine-tuned ResNet-50 combined with the two classification meth-
ods. The bold numbers indicate significant differences between the
classification methods (p < 0.05).

(a) The AgrilPlant dataset

Train size AgrilPlant5 AgrilPlant10
(%) OvO OvA OvO OvA
10 91.13 +− 1.39 89.47 +− 3.03 93.13 +− 1.57 93.17 +− 0.31
20 93.93 +− 2.47 92.40 +− 1.16 95.83 +− 1.87 96.17 +− 0.87
50 96.33 +− 1.62 96.07 +− 0.64 97.73 +− 1.11 97.67 +− 0.94
80 97.27 +− 0.86 97.07 +− 1.34 98.40 +− 0.48 98.47 +− 0.40
100 97.60 +− 1.44 97.33 +− 1.33 98.47 +− 0.70 98.63 +− 0.70

(b) The Tropic dataset

Train size Tropic5 Tropic10 Tropic20
(%) OvO OvA OvO OvA OvO OvA
10 96.80 +− 1.45 96.61 +− 1.20 92.54 +− 1.91 91.96 +− 1.20 90.54 +− 1.09 90.76 +− 1.40
20 98.16 +− 0.88 97.87 +− 1.09 95.80 +− 0.89 97.70 +− 0.30 93.96 +− 0.49 96.27 +− 0.42
50 99.52 +− 0.38 99.22 +− 0.47 98.72 +− 0.29 99.19 +− 0.17 98.17 +− 0.63 99.05 +− 0.10
80 99.66 +− 0.37 99.56 +− 0.32 99.24 +− 0.28 99.71 +− 0.25 98.80 +− 0.21 99.38 +− 0.15
100 99.66 +− 0.28 99.76 +− 0.24 99.58 +− 0.11 99.71 +− 0.17 99.23 +− 0.18 99.49 +− 0.16

(c) The Swedish dataset

Train size Swedish5 Swedish10 Swedish15
(%) OvO OvA OvO OvA OvO OvA
10 90.48 +− 4.79 89.68 +− 6.14 90.40 +− 2.37 87.88 +− 1.88 84.32 +− 4.39 85.47 +− 3.22
20 97.44 +− 1.85 98.08 +− 2.14 98.76 +− 0.96 96.80 +− 2.04 97.47 +− 2.54 94.32 +− 3.62
50 99.76 +− 0.36 99.60 +− 0.28 99.60 +− 0.20 99.72 +− 0.23 99.47 +− 0.27 99.49 +− 0.33
80 99.76 +− 0.36 99.92 +− 0.18 99.92 +− 0.18 99.68 +− 0.39 99.71 +− 0.17 99.79 +− 0.24
100 99.92 +− 0.18 99.92 +− 0.18 99.92 +− 0.11 99.92 +− 0.18 99.65 +− 0.49 99.68 +− 0.20

5.5.4 Results of Fine-tuned ResNet-50

We trained the pre-trained ResNet-50 combined with the two classification
methods based on five-fold cross-validation. The results obtained during
the testing phase are reported in Table 15.

1. Evaluation of the CNN on the AgrilPlant Dataset: from Table 15a, we
observe that training the CNN combined with OvO results in similar
performance levels to the CNN combined with OvA on this dataset.

2. Evaluation of the CNN on the Tropic Dataset: from Table 15b, we
observe that training the CNN combined with OvA significantly out-
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performs the CNN combined with OvO on 7 subsets of the datasets
with more classes.

3. Evaluation of the CNN on the Swedish Dataset: from Table 15c, the
results show that there is no significant difference between training
the CNN with the two classification methods on all subsets of this
dataset.

5.5.5 Results on the Monkey Datasets

We trained the two CNNs from scratch or using pre-trained weights using
the two classification methods on the two monkey datasets, Monkey-
10 and Imbalanced-Monkey-10, based on five-fold cross-validation. The
results obtained during the testing phase are reported in Table 16.

1. Evaluation of Scratch Inception-V3 on the Monkey-10 and Imbalanced-
Monkey-10 datasets: from Table 16a, we observe that training the
CNN combined with OvO significantly outperforms the CNN com-
bined with OvA on 5 (smaller) subsets of the Monkey-10 datasets
with several times significant differences of ∼ 7%.

2. Evaluation of Scratch Resnet-50 on the Monkey-10 and Imbalanced-
Monkey-10 datasets: from Table 16b, we observe that training the
CNN combined with OvO on Monkey-10 results in one case in a
significantly better performance (Monkey10:ts10) with a significant
difference of 5%.

3. Evaluation of Fine-tuned Inception-V3 on the Monkey-10 and Imbalanced-
Monkey-10 datasets: from Table 16c, we observe that training the
CNN combined with OvA significantly outperforms the CNN com-
bined with OvO on one data subset of Monkey-10 and Imbalanced-
Monkey-10.

4. Evaluation of Fine-tuned Resnet-50 on the Monkey-10 and Imbalanced-
Monkey-10 datasets: from Table 16d, the results show that there
is no significant difference between training the CNN with the two
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Table 16: Recognition performances (average accuracy and standard deviation) of
the studied CNNs combined with the two classification methods applied
on the Monkey-10 datasets. The bold numbers indicate significant
differences between the classification methods (p < 0.05).

(a) Scratch Inception-V3

Train size Monkey10 Imbalanced-Monkey10
(%) OvO OvA OvO OvA
10 55.91 +− 1.12 48.68 +− 5.35 38.11 +− 3.38 35.04 +− 3.49
20 68.91 +− 2.45 61.47 +− 3.70 48.24 +− 4.90 41.17 +− 4.78
50 86.28 +− 0.63 84.10 +− 1.95 66.79 +− 1.99 61.97 +− 2.63
80 93.00 +− 1.73 90.94 +− 1.94 75.33 +− 1.67 72.04 +− 3.31
100 94.16 +− 1.70 92.69 +− 1.19 78.25 +− 1.78 75.99 +− 2.34

(b) Scratch Resnet-50

Train size Monkey10 Imbalanced-Monkey10
(%) OvO OvA OvO OvA
10 54.52 +− 2.49 49.49 +− 0.98 36.43 +− 4.20 34.39 +− 2.41
20 67.66 +− 3.48 62.91 +− 3.27 42.57 +− 5.79 40.64 +− 3.43
50 80.81 +− 2.83 81.46 +− 1.19 63.64 +− 3.00 59.55 +− 3.10
80 89.56 +− 2.07 89.64 +− 0.71 70.22 +− 3.89 68.32 +− 2.77
100 92.33 +− 1.41 90.73 +− 1.30 74.53 +− 2.47 72.47 +− 3.39

(c) Fine-tuned Inception-V3

Train size Monkey10 Imbalanced-Monkey10
(%) OvO OvA OvO OvA
10 95.69 +− 1.42 96.86 +− 1.32 78.85 +− 6.24 75.11 +− 2.67
20 97.44 +− 1.07 97.15 +− 2.03 84.32 +− 3.27 84.46 +− 4.81
50 97.52 +− 0.73 98.17 +− 0.94 93.22 +− 2.61 94.66 +− 2.07
80 97.67 +− 1.15 99.13 +− 0.41 93.86 +− 1.88 96.57 +− 1.39
100 98.76 +− 0.66 99.27 +− 0.52 94.66 +− 2.49 96.42 +− 1.61

(d) Fine-tuned Resnet-50

Train size Monkey10 Imbalanced-Monkey10
(%) OvO OvA OvO OvA
10 92.40 +− 1.75 91.61 +− 1.35 64.15 +− 2.95 63.93 +− 2.96
20 94.53 +− 1.53 94.37 +− 2.24 79.85 +− 1.68 74.17 +− 5.89
50 95.77 +− 0.97 96.79 +− 1.65 89.70 +− 2.44 85.41 +− 4.48
80 97.37 +− 0.64 97.37 +− 1.40 92.55 +− 2.06 91.61 +− 2.67
100 97.66 +− 1.36 97.96 +− 0.48 93.86 +− 1.79 91.69 +− 1.73

classification methods on both the Monkey-10 and the Imbalanced-
Monkey-10 dataset.
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5.5.6 Results of Training CNNs without Data Augmentation

We trained the two CNNs from scratch and using pre-trained weights
combined with the two classification methods on the Agril5::ts100 and
Tropic10::ts100 datasets without data augmentation on the training data
(again based on five-fold cross-validation). The results obtained during
the testing phase are reported in Table 17.

Table 17: Recognition performances (average accuracy and standard deviation)
of the studied CNNs combined with the two classification methods
applied on the Agril5::ts100 and Tropic10::ts100 datasets. The bold
number indicates a significant difference between the classification
methods (p < 0.05).

Models AgrilPlant5::ts100 Tropic10::ts100
OvO OvA OvO OvA

Scratch-Inception-V3 91.47 +− 1.73 89.33 +− 4.43 94.15 +− 4.28 91.84 +− 5.51
Scratch-Resnet50 87.60 +− 1.57 83.53 +− 1.80 84.89 +− 0.87 84.40 +− 1.82
Fine-tuned-Inception-V3 93.40 +− 1.64 92.53 +− 2.60 96.50 +− 0.88 95.20 +− 5.04
Fine-tuned-Resnet50 92.53 +− 0.61 91.80 +− 1.79 93.74 +− 1.18 93.53 +− 1.31

The results show that training Scratch-ResNet-50 combined with OvO
significantly outperforms the CNN with OvA on the AgrilPlant5::ts100
dataset with a significant difference of ∼ 4%. Another observation is that
the CNNs combined with OvO always perform a bit better than the CNNs
combined with OvA on these two datasets. When we compare these results
to the results when data augmentation is used, we can observe that data
augmentation leads to performance improvements between 3% and 13%.
We also note that especially Scratch-ResNet-50 profits a lot from data
augmentation.

5.5.7 Discussion

We now summarize all obtained results when data augmentation is used:

• When training the two CNNs from scratch, the OvO classification
method performs significantly better in 37 out of the 100 experi-
ments. In this case, the OvA method never significantly outperforms
the OvO method.
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• When training the two pre-trained CNNs by fine-tuning them on
the four datasets, the OvA method performs significantly better in
23 out of the 100 experiments. In this case, the OvO method never
significantly outperforms the OvA method.

• The improvements of OvO when the CNNs are trained from scratch
are larger for smaller datasets. When we examine dataset subsets of
10%, 20%, and 50%, then the OvO scheme performs significantly
better in 29 out of 60 experiments. This agrees with the theory
stating that the OvO scheme generalizes better than the OvA scheme.

We also observed that the training process is in general more stable with
the OvO method compared to the OvA scheme. In Figure 20, we show
two train and test loss curves on a small dataset when training ResNet-50
from scratch. The plots clearly show a more stable learning process for
OvO, which agrees with the theory that it is beneficial to have output units
which are not heavily dependent on each other.

We finally want to mention several last points, which we noticed by
analyzing all results. First, the results of using pre-trained weights are in
general much better than the results of training the architectures from
scratch. This holds for both classification methods, but the differences are
much larger for the OvA scheme. Second, the performances of Inception-
V3 are overall a bit better than the results of ResNet-50. The best results
on the original datasets are excellent and were obtained with the pre-
trained Inception-V3 architecture combined with the OvA scheme. The
best performance on the AgrilPlant10 dataset is 98.8% (see Table 14a).
The best performance on the Tropic20 dataset is 99.7% (see Table 14b).
The best result on the Swedish15 dataset is 99.97% (see Table 14c). The
best result on the Monkey-10 dataset is 99.3% (see Table 16c).

5.6 Conclusion
We described a novel technique for training deep neural networks based on
the One-vs-One classification scheme. Two convolutional neural network
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(a) One-vs-All

(b) One-vs-One

Figure 20: Two loss curves when training Scratch-ResNet-50 combined with the
classification methods on the AgrilPlant10::ts10 dataset; (a) One-vs-
All, and (b) One-vs-One.

architectures were trained using the One-vs-One scheme and the standard
One-vs-All scheme on four image datasets with different amounts of ex-
amples and classes. The results show that when the deep neural networks
are trained from scratch, the proposed method significantly outperforms
the conventional One-vs-All training scheme in 37 out of 100 experiments.
The results also show that this is not the case when the architectures
were fine-tuned, for which the One-vs-All scheme wins in 21 out of 100
experiments. A possible reason why the OvA training scheme performs
better with fine-tuning is that the architectures were pre-trained using
the One-vs-All scheme on ImageNet. It would be interesting to train One-
vs-One architectures on ImageNet and study if this would improve the
transfer learning results.
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Future work. There are several directions that we want to explore fur-
ther. First, instead of using the One-vs-One scheme, it would be interesting
to generalize our method to the use of error-correcting output codes (Diet-
terich and Bakiri, 1995). The proposed architecture can also be extended
by connecting the One-vs-One outputs to an additional One-vs-All output
layer.

Second, although transfer learning is very useful for solving a different
image recognition problem, there are also quite different applications
involving fMRI images, 3D medical scans, or hyperspectral camera-images.
For such pattern recognition problems, almost no pre-trained architectures
exist. We would therefore like to research the benefits of using One-vs-One
classification for such problems.

Third, we want to study the benefits of using One-vs-One classification
when combined with other deep neural networks, such as recurrent neural
networks (RNNs). The training process of recurrent neural networks is
usually much less stable than when training convolutional neural networks,
and it would be interesting to study if the One-vs-One scheme is beneficial
for training RNNs.



6
D I S C U S S I O N

During the work in this dissertation, a considerable number of experiments
were carried out using deep learning architectures. Three existing plant
datasets (LeafSnap, Folio, and Swedish) and three novel plant datasets
(AgrilPlant, Five-Tropic-Fruits, and Tropic) were used to deal with different
tasks, including plant detection, plant counting, and plant classification.
We formulated several objectives and research questions stated in Chap-
ter 1. This chapter provides answers to the research questions and indicates
possible directions for future work.

6.1 Answers to the Research Questions

Objective 1: Comparing the traditional feature extractors to the deep
learning techniques.
Question 1: Does deep learning outperform hand-crafted features and
local descriptors in the plant domain? Can we modify the on-the-shelf
CNN architectures so that they achieve better performance on plant classi-
fication? Do CNN architectures also work well on small datasets?

To answer these questions, in Chapter 2, we compared the local feature
descriptor (HOG with KNN), and a bag of visual words with the histogram
of oriented descriptor (HOG-BOW) combined with two classifiers (MLP
and SVM) to two CNNs (GoogleNet and AlexNet) on three plant datasets.
We trained the two CNN architectures from scratch or pre-trained weights.
Additionally, the preliminary experiments suggested that reducing the
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number of neurons in the last two final fully-connected layers of AlexNet
led to less computational time and better accuracy. Therefore, we modified
and used a concise version of AlexNet. The results showed that among the
local descriptors, HOG-BOW combined with either MLP or SVM yielded
significantly better performance than HOG combined with KNN. When
comparing the local feature descriptors to the CNN architectures, the
fine-tuned versions of the CNN architectures significantly outperformed
the local feature descriptors on all three datasets. On the relatively small
dataset (Folio), both the fine-tuned AlexNet and the fine-tuned GoogleNet
obtained the best results.

Objective 2: Determine the effectiveness of the combination of data-
augmentation techniques for plant classification problems.
Question 2: Does DA help to improve classification performance? If a
single DA technique improves recognition accuracy, does the combination
of DA techniques work more effectively?

In Chapter 3, we firstly explored and compared the effectiveness of six
single DA techniques (rotation, blur, contrast, scaling, illumination, and
projective transformation) on three plant datasets using two CNN archi-
tectures: GoogleNet and AlexNet. Furthermore, we evaluated the utility
of several combinations of these DA techniques, i.e., rotation+blur, rota-
tion+contrast, and rotation+contrast+illumination.

The results suggested that almost all single DA techniques improve
classification performance on all studied plant datasets. However, this
is not the case for the blur operation on the AgrilPlant dataset, which
resulted in worse performance. When considering the combination of the
DA techniques, combining DA methods can be of great help to improve
performances, especially when training CNNs from scratch. On the other
hand, training CNNs with pre-trained weights hardly profits from DA.
When training the scratch CNN models, the combinations of rotation and
illuminations or rotation and contrasts were most promising to obtain
better performances.
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Objective 3: Develop a DA technique that helps to improve the fruit
counting performance.
Question 3: Can DA techniques enhance the performance of the fruit
counting task?

We researched this question in Chapter 4. Data-augmentation techniques
generally are applied to the training set to increase the number of training
images and modify the image properties by for example rotating, flipping,
or scaling images. Previous works have shown that in most cases, DA
techniques help to improve classification accuracy.

We proposed a different type of DA technique, Fruit data-augmentation
(FDA), and applied it to the fruit dataset. This technique is able to add
new fruit masks to the original images and ensures the correct fruits and
number of fruits in the images. The FDA technique increases the size of the
training set and adds new images containing more fruits to the training set.
One of the advantages of FDA is that we do not need to create bounding
boxes manually.

We performed two different approaches for fruit counting: a holistic
regression-based approach, and a detection-based approach. The perfor-
mances of these two fruit counting approaches are evaluated by comparing
three mean absolute error (MAE) values obtained from the models trained
on either the original training set (the O-models), or the augmented train-
ing set (the A-models). The three loss-values are considered for different
purposes: MAE for counting and classification (MAECC), MAE for the
count-only (MAECO), and MAE for evaluating misclassifications (MAEMC).
The two CNN architectures, ResNet50 and Inception-V3, are used for the
regression-based counting approach and the two object-detection archi-
tectures, Faster R-CNN and SSD-MobileNet, are used for performing fruit
detection of the detection-based counting approach.

The results suggested that the FDA technique has been of great help
for the regression-based counting approach. All three loss-values indi-
cated that the A-models performed significantly better than the O-models.
However, this is not the case for the detection-based counting approach.
The results showed no significant difference between the A-models and
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the O-models. This means the FDA method does not aid in improving
performance for the detection-based counting approach. This is because
the fruit masks which were added to the training images do not have a
new appearance; therefore, there is no new information for the detector-
based approach introduced to the images. The fruit data-augmentation
technique is helpful for the regression-based counting approach.

Objective 4: Combine CNNs with One-vs-One classification to enhance
recognition accuracy.
Question 4: Do CNNs combined with the One-vs-One classification scheme
outperform the traditional One-vs-All classification scheme?

CNNs are almost always combined with a One-vs-All classification for
dealing with object classification problems. In Chapter 5, we described the
development of a novel One-vs-One classification scheme for CNNs. For
this, we changed the neural network architecture, created a code matrix
to convert a one-hot encoding to an OvO label encoding, changed the loss
function and output layer, and changed the method to classify the unseen
examples. The advantages of the OvO classification scheme compared to
the OvA classification scheme are: (a) the OvO scheme generalizes better
than the OvA scheme, (b) the OvO scheme could reduce problems with
learning instabilities, and (c) the OvO scheme does not create artificial
class imbalances.

To evaluate the performance of the proposed method, we compared the
OvO and OvA classification schemes by training two CNN architectures
(ResNet50 and Inception-V3) on three plant datasets and one fine-grained
dataset containing different monkey species. The two CNNs are trained
from scratch or pre-trained weights. We performed experiments on differ-
ent training sizes of images or classes to study the impact of the proposed
method on smaller training sets.

The results suggested that when training the CNNs from scratch, the
OvO classification scheme outperforms the OvA scheme on all studied
datasets. Moreover, the improvements of OvO when training the CNNs
from scratch are larger for smaller datasets, which supports that the OvO
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scheme has better generalization properties than the OvA scheme. On
the other hand, when training CNNs with pre-trained weights, the OvA
scheme performed better than the OvO scheme in several cases. The
possible reason is that the weights of the fine-tuned models were trained
using the OvA classification on the ImageNet dataset. One observation
is that training CNNs with the OvO scheme is more stable than the OvA
scheme. Training CNNs combined with OvO classification can be beneficial,
especially when training from scratch. This is helpful for the application
domains where there are no pre-trained models available.

6.2 Future Work
We observed that deep convolutional neural networks have performed
remarkably well on plant recognition, plant detection, and counting tasks.
This dissertation has also shown that applying various data-augmentation
algorithms to the training set helps to improve recognition and counting
performances. In addition to augmentation methods, we proposed using
neural networks with a novel One-vs-One classification scheme to improve
plant classification accuracy.

One of the remaining challenging tasks in plant recognition research
is the appearance variation and morphological variation issues. Plants
generally are changed by different seasons of the year. They also vary
in their forms and structures, which can be seen in the leaves, stems,
flowers, or fruits. These issues could be further studied by integrating
prior botanical knowledge such as spatial location, plant characteristics,
and climate conditions with conditional generative adversarial networks
(GANs) (Goodfellow et al., 2014; Mirza and Osindero, 2014).

Moreover, in terms of application aspect, it would be interesting to
integrate neural networks with current technologies, such as unmanned
aerial vehicles (UAVs), or the internet of things (IoT), and apply them to
improve smart farming systems and agriculture science research. We want
to examine the following systems further:
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• Disease detection: We are interested in developing a plant disease
detection system. Open field cultivation is exposed to danger with
variegated leaves or fruit diseases, such as canker, mosaic, or black
or white mold. We intend to improve the Fruit Data Augmentation
(FDA) technique, which was discussed in Chapter 4, and apply it
to the plant disease detection system. The FDA technique helps to
increase the fruit counting performance. One drawback of FDA is
that the fruit masks are added freely to the original images, which
can create unrealistic objects (apples can be put in the sky). We can
enhance the technique by verifying the leaf or fruit in the images
and place the disease masks on the correct position. Furthermore,
instead of counting the number of objects, we will determine the
ratio of sick and healthy plants and decide whether the crops need
attention.

• Autonomous weed control system: Weed detection remains a chal-
lenging problem due to a substantial similarity between weeds and
crops. We aim to develop an autonomous weed control system by
integrating UAVs to obtain entire field images. In Chapter 5, we
discussed that the One-vs-One scheme works more efficiently when
fewer classes are classified, and excellent performances with the
fine-grained classification are achieved. In most plantations, there
are usually a few types of plants, hence we expect that the OvO
scheme should work well for weed detection. We can identify the
weeds and draw the attention of farmers to problem areas.

• Crop monitoring system with IoT technology: We have shown
that deep learning algorithms produce an excellent performance for
plant classification. We aim to develop a precision farming system by
integrating the classification results using deep learning algorithms
with vital data gathering from the IoT devices, such as real-time soil
moisture, temperature, or light exposure. The system should be able
to monitor whether plants are sick, wither, or ready for harvest.
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S U M M A R Y

This dissertation emphasizes using deep convolutional neural networks to
deal with three problems: plant recognition, detection, and counting. The
dissertation can be summarized into six chapters, as follows:

Chapter 1 introduces a brief motivation for plant recognition, detection,
and counting research. Furthermore, the objective and research questions
are provided.

Chapter 2 aims to develop a baseline of the plant recognition systems. We
compare the scratch and fine-tuned versions of two deep convolutional
neural network architectures (AlexNet and GoogleNet) to several local fea-
ture descriptors or bags of visual words combined with different classifiers:
a histogram of oriented gradients (HOG) with k-nearest neighbors (KNN),
a bag of visual words with the histogram of oriented gradients (HOG-
BOW) with multilayer perceptrons (MLP), and HOG-BOW with a support
vector machine (SVM). Additionally, AlexNet is customized by reducing
the number of neurons to 1,024 neurons to reduce computational time. In
total, seven methods are used for performing plant classification on three
plant datasets, in which one of these is a relatively small dataset. The
results suggest that among the classical feature descriptors, HOG-BOW
combined with either MLP or SVM performs better than HOG with KNN.
When comparing the deep convolutional neural networks (CNNs) to the
local feature descriptor methods, the fine-tuned CNNs achieve notable
performance and significantly outperform the classical feature descriptors.
These methods also work best on the relatively small dataset.

Chapter 3 examines the benefits of data augmentation techniques for plant
classification. We evaluate six data augmentation techniques (rotation,
blur, contrast, scaling, illumination, and projective transformation) and six
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combinations of these techniques, resulting in a total of 12 data augmen-
tation schemes. We train two CNN architectures (AlexNet and GoogleNet)
from scratch or pre-trained weights, on three plant datasets. The results
show that five out of six individual data augmentation techniques help to
improve classification performance. Among these techniques, only the blur
operation does not help and results in worse accuracy on one of the studied
datasets. The combination of rotation+illumination or rotation+contrast
helps most to get the best performance. Additionally, when training the
CNNs on the augmented sets, the scratch-AlexNet architecture profits most
from data augmentation with an average of 4.6% improvement compared
to training on the original image sets. On the other hand, the fine-tuned
CNN models hardly profit from data augmentation. The possible reason is
that the fine-tuned CNN models already obtained great performances, so
performing data augmentation on the training sets does not benefit much.

Chapter 4 proposes a Fruit-data-augmentation (FDA) technique for the
fruit counting problem. This technique is beneficial for adding the num-
ber of fruits to the images and increasing the number of images to the
training set. To evaluate the benefit of the FDA method, we train two
approaches for fruit counting, a holistic regression-based approach, and a
detection-based approach. For the regression-based approach, ResNet50
and Inception-V3 are used; for the detection-based approach, Faster R-
CNN and SSD-MobileNet are trained for the fruit detection, afterwards
the counting task. For each of these two approaches, we evaluate the
counting performance by comparing three loss-values obtained from the
models trained on the original training set (the O-models) and the models
trained on the augmented training set (the A-models). The results suggest
that the FDA method has been of great help for all the regression-based
approaches, whereas the detection-based approaches do not profit from
the FDA method.

Chapter 5 introduces a novel One-vs-One (OvO) classification scheme
for CNNs. CNNs almost always employ a One-vs-All (OvA) classification



scheme for performing multi-class classification. The proposed OvO ap-
proach changes the neural network architecture and trains each output
unit to classify between a specific pair of classes. Additionally, this scheme
changes the loss function, uses a code matrix to generate an OvO label
encoding for each input class, and changes the method for classifying
images. We analyze the advantages of using the OvO scheme for CNNs by
training two CNN architectures (ResNet50 and Inception-V3) combined
with either the OvO or OvA classification schemes. The two CNN archi-
tectures are trained from scratch or pre-trained weights on three plant
datasets and one fine-grained dataset of ten monkey species. In addition
to the experiments on the whole training sets, we perform experiments on
the subsets of all datasets to analyze the benefits of the proposed method
on the smaller training sets. The results show that when CNNs are trained
from scratch, the OvO scheme significantly outperforms the OvA scheme
on all datasets. Moreover, the improvement of the proposed method is
larger when training the CNNs on the smaller datasets. However, this is
not the case when training CNNs with pre-trained weights. This can be
explained by the fact that the pre-trained models were obtained from
training with the OvA scheme on the ImageNet dataset.

Chapter 6 provides the answers to the research questions, and suggests
several directions for future work.





S A M E N VAT T I N G

Dit proefschrift legt de nadruk op het gebruik van diep-convolutionaire
neurale netwerken om drie problemen aan te pakken: het herkennen,
detecteren en tellen van planten. Het proefschrift wordt beschreven in zes
hoofdstukken, te weten:

Hoofdstuk 1 introduceert een korte motivatie voor onderzoeken naar het
herkennen, detecteren en tellen van planten. Daarnaast worden de doelen
en onderzoeksvragen uiteengezet.

Hoofdstuk 2 heeft als doel om een maatstaf voor plantenherkenningssys-
temen te ontwikkelen. We vergelijken de standaard versies en de geopti-
maliseerde versies van twee architecturen voor diep-convolutionele neu-
rale netwerken (AlexNet en GoogleNet) met de lokale-kenmerk beschrijvin-
gen of de zakken-met-visuele-woorden gecombineerd met verschillende
klassificatiemethodes (HOG met KNN, HOG-BOW met MLP, en HOG-
BOW met SVM). Om de rekentijd te verminderen is AlexNet bovendien
aangepast door het aantal neuronen terug te brengen tot 1.024 neuronen.
In totaal worden er zeven methoden gebruikt om planten van drie datasets
te klassificeren, waarvan één een relatief kleine dataset is. De resultaten
laten zien dat van de klassieke kenmerkbeschrijvingen, HOG-BOW in com-
binatie met MLP of SVM beter presteert dan HOG met KNN. Wanneer we
de CNN-architecturen vergelijken met de lokale-kenmerkbeschrijvingen,
presteren de geoptimaliseerde CNN opmerkelijk goed, en aanzienlijk beter
dan de klassieke kenmerkbeschrijvingen. Deze methoden werken ook het
beste op de relatief kleine dataset.

Hoofdstuk 3 onderzoekt de voordelen van verschillende methodes voor
databehandeling voor de klassificatie van planten. We hebben zes data be-
handelingstechnieken (rotatie, vervaging, contrast, schaling, belichting en
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projectieve transformatie) en zes combinaties van deze technieken geëval-
ueerd, wat heeft geleid tot een totaal van 12 varianten van databehandel-
ing. Hiervoor hebben we twee CNN-architecturen (AlexNet en GoogleNet)
getraind, vanaf niets of vanaf voor-getrainde gewichten, op drie plant-
datasets. De resultaten laten zien dat vijf van de zes databehandelingstech-
nieken de klassificatieprestaties verbeteren. Van deze technieken helpt
alleen vervaging weinig, en leidt tot een verminderde nauwkeurigheid
op één van de datasets. De combinatie rotatie en belichting, en de com-
binatie rotatie en contrast helpen het meest om de prestaties te ver-
beteren. Bovendien profiteert de AlexNet architectuur, getraind vanuit
niets, het meest van trainen met de aangepaste datasets, met een verbeter-
ing van gemiddeld 4,6% ten opzichte van trainen met de originele dataset.
De geoptimaliseerde CNN-modellen profiteren daarentegen nauwelijks
van de databehandeling. Een mogelijke reden hiervoor is dat de geopti-
maliseerde CNN-modellen al hoge prestaties bereiken, zodat het uitvoeren
van databehandeling op de trainingssets weinig oplevert.

Hoofdstuk 4 presenteert een FDA-techniek (Fruit-data-behandeling) voor
het probleem van het tellen van fruit. Deze techniek is gunstig voor het
toevoegen van het aantal vruchten aan het beeldmateriaal en het verhogen
van het aantal beelden in de trainings set. Om de toegevoegde waarde
van de FDA-methode te evalueren, trainen we twee benaderingen voor
het tellen van fruit: een holistische aanpak gebaseerd op regressie, en een
aanpak gebaseerd op detectie. Voor de aanpak gebaseerd op regressie
worden ResNet50 en Inception-V3 gebruikt; voor de aanpak gebaseerd
op de detectie worden Faster R-CNN en SSD-MobileNet getraind om fruit
te detecteren ten behoeve van de telling. Voor beide benaderingen eval-
ueren we de telprestaties door drie verlieswaarden te vergelijken, die zijn
verkregen door de modellen te trainen op de oorspronkelijke trainingsdata
(de O-modellen) en door de modellen te trainen met de aangepaste train-
ingsdata (de A-modellen). De resultaten laten zien dat de benaderingen
gebaseerd op regressie voordeel behalen uit de FDA-methode, terwijl de
benaderingen gebaseerd op detectie niet profiteren van de FDA-methode.



Hoofdstuk 5 introduceert een nieuwe One-vs-One (OvO) klassificatiemeth-
ode voor CNN’s. Over het algemeen maken CNN’s gebruik van One-vs-
All (OvA) klassificatie voor het klassificeren in drie of meer klassen. De
voorgestelde OvO-methode verandert de neurale-netwerkarchitectuur
door elke uitgangspunt te trainen om onderscheid tussen twee specifieke
klassen. Daarnaast verandert dit schema de verliesfunctie, maakt het
gebruik van een codematrix om een OvO-label te genereren voor elke
inputklasse, en wijzigt het de methode voor het klassificeren van beelden.
We analyseren de voordelen van het gebruik van het OvO-schema voor
CNN’s door twee CNN-architecturen (ResNet50 en Inception-V3) te trainen
met de OvO- en de OvA-klassificatiemethode. De twee CNN-architecturen
worden vanuit het niets getraind, of maken gebruik van vooraf getrainde
gewichten gebaseerd op drie plantdatasets en een uitgebreide dataset
van tien apensoorten. Naast de experimenten op de gehele trainingssets,
hebben we ook experimenten uitgevoerd op deelverzamelingen van alle
bestudeerde datasets om de voordelen van de voorgestelde methode te
analyseren op kleinere trainingsets. De resultaten tonen aan dat wanneer
CNN’s vanaf niets worden getraind, de OvO-methode op alle bestudeerde
datasets significant beter presteert dan de OvA-methode. Bovendien is
het voordeel van de voorgestelde methode groter wanneer de CNN’s op
kleinere datasets worden getraind. Dit is echter niet het geval bij het
trainen van CNN’s met vooraf getrainde gewichten. Dit kan worden verk-
laard door het feit dat de vooraf getrainde modellen zijn getraind met de
OvA-methode op de ImageNet-dataset.

Hoofdstuk 6 geeft de antwoorden op de onderzoeksvragen, en presenteert
een discussie en mogelijk toekomstig onderzoek.
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