

 University of Groningen

One-vs-One classification for deep neural networks
Pawara, Pornntiwa; Okafor, Emmanuel; Groefsema, Marc; He, Sheng; Schomaker, Lambert
R. B.; Wiering, Marco A.
Published in:
Pattern recognition

DOI:
10.1016/j.patcog.2020.107528

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Pawara, P., Okafor, E., Groefsema, M., He, S., Schomaker, L. R. B., & Wiering, M. A. (2020). One-vs-One
classification for deep neural networks. Pattern recognition, 108, [107528].
https://doi.org/10.1016/j.patcog.2020.107528

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1016/j.patcog.2020.107528
https://research.rug.nl/en/publications/c3c66301-1e45-42ff-ae51-9216c2ff3781
https://doi.org/10.1016/j.patcog.2020.107528

Pattern Recognition 108 (2020) 107528

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

One-vs-One classification for deep neural networks

Pornntiwa Pawara

a , ∗, Emmanuel Okafor b , Marc Groefsema

a , Sheng He

c ,
Lambert R.B. Schomaker a , Marco A. Wiering

a

a Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, 9747 AG Groningen, The Netherlands
b Department of Computer Engineering, Ahmadu Bello University, Zaria, Nigeria
c Boston Children’s Hospital, Harvard Medical School, USA

a r t i c l e i n f o

Article history:

Received 17 October 2019

Revised 19 June 2020

Accepted 30 June 2020

Available online 1 July 2020

Keywords:

Deep learning

Computer vision

Multi-class classification

One-vs-One classification

Plant recognition

a b s t r a c t

For performing multi-class classification, deep neural networks almost always employ a One-vs-All (OvA)

classification scheme with as many output units as there are classes in a dataset. The problem of this

approach is that each output unit requires a complex decision boundary to separate examples from one

class from all other examples. In this paper, we propose a novel One-vs-One (OvO) classification scheme

for deep neural networks that trains each output unit to distinguish between a specific pair of classes.

This method increases the number of output units compared to the One-vs-All classification scheme but

makes learning correct decision boundaries much easier. In addition to changing the neural network ar-

chitecture, we changed the loss function, created a code matrix to transform the one-hot encoding to a

new label encoding, and changed the method for classifying examples. To analyze the advantages of the

proposed method, we compared the One-vs-One and One-vs-All classification methods on three plant

recognition datasets (including a novel dataset that we created) and a dataset with images of different

monkey species using two deep architectures. The two deep convolutional neural network (CNN) archi-

tectures, Inception-V3 and ResNet-50, are trained from scratch or pre-trained weights. The results show

that the One-vs-One classification method outperforms the One-vs-All method on all four datasets when

training the CNNs from scratch. However, when using the two classification schemes for fine-tuning pre-

trained CNNs, the One-vs-All method leads to the best performances, which is presumably because the

CNNs had been pre-trained using the One-vs-All scheme.

© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

r

i

c

d

c

a

s

e

o

d

p

i

w

e

C

k

O

[

c

v

d

m

o

O

m

h

0

. Introduction

Convolutional neural networks (CNNs) have obtained excellent

esults for many different pattern recognition problems [1,2] . Most

mage recognition problems require the CNN to solve a multi-class

lassification problem. Whereas in the machine learning literature,

ifferent approaches have been proposed for dealing with multiple

lasses [3] , in deep learning, the One-vs-All classification scheme is

lmost universally used. The problem of this method is that deci-

ion boundaries need to be learned that separate the examples of

ach class from examples of all other classes. Especially if images

f different classes resemble each other quite a lot, learning such

ecision boundaries can be very complicated. Therefore, we pro-

ose a novel One-vs-One classification scheme for training CNNs in
∗ Corresponding author.

E-mail addresses: p.pawara@rug.nl (P. Pawara), m.a.wiering@rug.nl (M.A. Wier-

ng).

f

w

d

ttps://doi.org/10.1016/j.patcog.2020.107528

031-3203/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article u
hich each output unit only needs to learn to distinguish between

xamples of two different classes. This should make training the

NN easier and lead to better recognition performance.

Multi-class classification in machine learning. The best-

nown methods to deal with multi-class classification tasks are

ne-vs-All (OvA) classification and One-vs-One (OvO) classification

4] . Other approaches include One-class classification [5,6] , hierar-

hical methods [7,8] , and error-correcting output codes [9] . One-

s-All (OvA) classification is the most commonly used method for

ealing with multi-class problems. In this classification scheme,

ultiple binary classifiers are trained to distinguish examples from

ne class from all other examples. When there are K classes, the

vA scheme trains K different classifiers. An advantage of this

ethod is that machine learning algorithms that were designed

or binary classification can be easily adapted in this way to deal

ith multi-class classification problems. A disadvantage is that the
ataset on which each classifier is trained becomes imbalanced be-

nder the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.patcog.2020.107528
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107528&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:p.pawara@rug.nl
mailto:m.a.wiering@rug.nl
https://doi.org/10.1016/j.patcog.2020.107528
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528

S

a

S

d

i

s

f

2

v

n

v

2

o

l

f

a

o

b

n

s

a

w

e

a

J

g

a

t

t

y

p

d

e

a

p

c

C

2

s

i

f

m

i

w

t

w
cause there are many more negative examples than positive ones

for each classifier.

The One-vs-One (OvO) classification method has also regularly

been used for training particular machine learning algorithms such

as support vector machines [10–12] or other classifiers [13] . In the

OvO scheme, each binary classifier is trained to discriminate be-

tween examples of one class and examples belonging to one other

class. Therefore, if there are K classes, the OvO scheme requires

training and storing K(K − 1) / 2 different binary classifiers, which

can be seen as a disadvantage when K is large. The authors in

[14] described several methods to cope with a large set of base

learners for OvO. Furthermore, different algorithms have been pro-

posed to improve the OvO scheme [15,16] . An advantage of the

OvO scheme is that the datasets of individual classifiers are bal-

anced when the entire dataset is balanced. Comparisons between

using the OvO scheme and the OvA scheme have shown that OvO

is better for training support vector machines [10,17] and several

other classifiers [13] .

Multi-class classification in deep neural networks. When

deep neural networks are used for multi-class classification prob-

lems, the output layer almost always uses a softmax function and

one output unit for each different class. This is therefore a One-

vs-All classification scheme, although the output units share the

same hidden layers. Attribute learning [18,19] , in which different

attributes are predicted, and their combination is used to infer a

class, is another promising way to deal with multi-class learning

but may require substantially more labeling effort.

Contributions of this paper. We propose a novel One-vs-One

classification method for deep neural networks. The proposed ar-

chitecture comprises an output layer with K(K − 1) / 2 output units

and a shared feature learning part. Each output is trained to dis-

tinguish between inputs of two classes and be indifferent to exam-

ples of other classes. To construct the OvO classification scheme,

we devised three steps: 1) Creating a code matrix to transform the

one-hot encoding to a new label encoding, 2) Changing the output

layer and the loss function, and 3) Changing the method to classify

new (test) examples.

This OvO scheme has to the best of our knowledge not been

proposed before for deep neural networks. We only found one re-

lated paper that describes an OvO scheme for shallow neural net-

works, for which K(K − 1) / 2 different neural networks are trained

and stored [20] . The advantages of our proposed OvO method com-

pared to that more traditional OvO scheme are that we only need

to train and store one deep neural network, and our architecture

may benefit from positive knowledge transfer when training mul-

tiple output units together.

In our experiments, we use three different plant datasets (in-

cluding a novel dataset called Tropic) and a dataset of different

types of monkeys. Using computer vision techniques for classify-

ing plant images plays a vital role in agriculture, monitoring the

environment, and automatic plant detection systems [21] . Although

much research has already been done on recognizing plant images,

it is still a difficult and challenging task due to intra-class varia-

tions, inter-class similarities, and complex backgrounds [22,23] .

We also use a different dataset consisting of types of monkeys

to examine if the results on the plant recognition problems gen-

eralize to a different fine-grained species classification problem.

Furthermore, we performed experiments with an imbalanced vari-

ant of the monkey dataset to study if the OvO scheme can better

handle class imbalances. For classifying the image data, two deep

CNNs are used, Inception-V3 [24] and ResNet-50 [25] , which are

trained from scratch or with fine-tuning from pre-trained weights.

Finally, experiments were performed with different amounts of

training images and classes from the four datasets using sub-

sampling, to study the impact of smaller or larger datasets on the

results obtained with the OvO and OvA schemes.
l
Paper Outline. The rest of this paper is organized as follows.

ection 2 describes and theoretically compares the One-vs-One

nd One-vs-All classification methods for deep neural networks.

ection 3 describes the plant datasets, the monkey dataset, and the

ata-augmentation methods. The experimental setup is presented

n Section 4 , after which Section 5 presents and discusses the re-

ults. Section 6 concludes the paper and describes directions for

uture work.

. A Primer on One-vs-All and One-vs-One classification

In this section, we explain the two classification schemes (One-

s-All and One-vs-One) for multi-class classification with deep

eural networks. Then, we present a theoretical analysis of the ad-

antages of the One-vs-One scheme.

.1. One-vs-All classification

In multi-class classification, each example belongs to precisely

ne class. Therefore a dataset is annotated with the correct class

abel using a one-hot target output vector containing zeros, except

or the target class, which has a value of one. The goal is to learn

 mapping between inputs and outputs so that the correct class

btains the highest activation and, preferably, is the only one that

ecomes activated after propagating the inputs to the outputs.

One-vs-All (OvA) classification involves training K different bi-

ary classifiers (output units), each designed to discriminate an in-

tance of a given class relative to all other classes [26] . To do this,

 softmax activation function is used in the output layer, and the

eights of the deep neural network are optimized using the cross-

ntropy loss function and a particular optimizer.

The categorical cross-entropy loss J OvA for a single training ex-

mple is:

 O v A = −
K ∑

i =1

y i log (̂ y i) (1)

Where K denotes the number of classes, y i is defined as the tar-

et value (0 or 1) for a given class i , and ˆ y i denotes the probability

ssigned by the network that class i is the correct one. To compute

hese probabilities, the output values of the network are given to

he softmax activation function:

ˆ
 i =

e o i ∑ K
j=1 e

o j
(2)

Where o i represents the output value for class i , which is com-

uted by summing the weighted values passed from the final hid-

en layer. Note that this final summation uses a weight vector for

ach class and therefore the activations of the final hidden layer

re linearly combined to compute the o i values. For testing pur-

oses on unseen examples, the predicted output class C is simply

omputed using:

 = argmax i ̂ y i . (3)

.2. The proposed One-vs-One approach

In this subsection, we explain the novel One-vs-One (OvO) clas-

ification scheme for traning deep neural networks. As mentioned

n the introduction, OvO classification has been used successfully

or different machine learning algorithms such as support vector

achines. This classification scheme has also been used for train-

ng neural networks [20] , for which different (shallow) neural net-

orks were trained separately for each pair of classes. Therefore,

hat approach leads to the necessity of training many neural net-

orks and no possibility of sharing weights for solving multiple re-

ated pattern recognition problems. We present a novel OvO clas-

P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528 3

s

r

s

t

t

C

t

s

o

c

t

K

a

c

t

d

t

0

f

d

t

M

e

C

S

n

c

M

c

o

0

e

c

a

e

c

t

O

c

p

d

w

o

w

t

a

o

o

t

y

e

n

c

n

a

y

y

m

p

J

N

t

t

t

i

t

a

p

b

i

p

b

M

i

z

t

t

v

s

V

F

2

a

s

e

t

u

h

w

n

p

o

W

a

u

s

s

c

a

m

o

f
ification scheme that only requires to train a single (deep) neu-

al network. This has as advantages that the method requires less

torage space, computational time and can benefit from knowledge

ransfer and multi-task learning. To construct the OvO classifica-

ion scheme, we devised three steps: 1) Creating a code matrix, 2)

hanging the output layer and the loss function, and 3) Changing

he method to classify new (test) examples. We will explain these

teps in detail below.

Creating the OvO code matrix . In OvO classification, instead

f using a one-hot target vector that assigns a one to the target

lass and zeros to all other classes, we need to construct a method

hat allows for pairwise classification. Therefore, instead of using

 outputs where K is the number of classes, we need to construct

 target vector consisting of L = K(K − 1) / 2 values. We do this by

onstructing a code matrix, which converts the one-hot target vec-

or to the target values for the L outputs. The output units in the

eep neural network represent binary classifiers with outputs in

he bound [-1,1]. The target values for these outputs have values -1,

, or 1. Here, the value 0 denotes that the output should be indif-

erent to both classes. For example, when an output unit needs to

istinguish cats from dogs, and the training image shows a zebra,

he target value for that output unit would be 0. The code matrix

 c has a dimension of K × L . The arrangement of the code matrix

ntries uses the principle of pairwise separation of classes C i and

 j , given that i < j [4] .

It is easiest to explain the code matrix using an example.

uppose we have a dataset with 5 classes, K = 5 , so that the

umber of output units L = (5 × 4 / 2) = 10 . For this example, the

ode matrix is defined as:

 c =

⎡

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

1 1 1 1 0 0 0 0 0 0

−1 0 0 0 1 1 1 0 0 0

0 −1 0 0 −1 0 0 1 1 0

0 0 −1 0 0 −1 0 −1 0 1

0 0 0 −1 0 0 −1 0 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

When we have the one-hot target vector y denoting the correct

lass, we can multiply it with the code matrix to obtain the target

utputs for the different output units. For example when y T = (0 0

 1 0), which denotes that class 4 is the correct one for a training

xample, then we can compute the target vector for OvO classifi-

ation by: y T ov o = y T M c = (0 0 –1 0 0 –1 0 –1 0 1), which is simply

 copy of the 4 th row of the code matrix. In this example, the 3rd

ntry in the obtained target vector denotes that for the pairwise

lassification between classes 1 and 4, the target class is 4, so that

he 3rd output unit should output a value of –1.

New output layer and loss function . As explained above, the

vO classification method requires more output units than OvA

lassification. Although this may mean the OvO scheme is com-

licated to use when there are a vast number of classes, many

atasets do not have more than 50 classes, and in the experiments,

e will focus on such (smaller) datasets. To allow the network to

utput pairwise classifications, we simply construct a deep model

ith L = K(K − 1) / 2 output units. We cannot use the softmax ac-

ivation function anymore since that would assign probabilities to

ll output units, which add up to 1. Furthermore, the novel target

utput vector contains numbers between -1 and 1. Therefore, in

ur system, we use the hyperbolic tangent (tanh) activation func-

ion for the L output units, defined as:

ˆ
 i =

e o i − e −o i

e o i + e −o i
(4)

Although this network could be trained with the mean squared

rror (MSE) loss function, it is well-known that training a neural

etwork for a classification problem can be better done with a
ross-entropy loss function [27] . Therefore, we customized the bi-

ary cross-entropy loss function, for which the target values y O v O
i

nd output values ˆ y i are first scaled to the range [0,1] using:

O v O ′
i =

y O v O
i

+ 1

2

, y ′ i =

ˆ y i + 1

2

(5)

For dealing with numerical problems, the probability values of

′ are clipped to lie in the range of [0.0 0 0 01, 0.99999]. Now, the

ulti-output binary cross-entropy loss J OvO for an example is com-

uted with:

 O v O = −1

L

L ∑

i =1

(y O v O
′

i × log (y ′ i) + (1 − y O v O
′

i) × log (1 − y ′ i)) (6)

Where y O v O
′

i
denotes the new target value for a given class i .

ote that this loss function is also used for multi-label classifica-

ion, where multiple outputs can be activated given an input pat-

ern. The difference in our approach is that we include don’t care

arget outputs as well, which need to be mapped to the probabil-

ty 0.5 or a tanh-activation of 0 in the output layer to minimize

he loss. Another choice would be to not train on such outputs at

ll, but that would provide less information to the network. Some

reliminary experiments showed that better results were obtained

y also training on target values of zero.

Classifying new examples . To predict the class label C for an

nput pattern x , the input is first propagated to compute the L out-

uts ˆ y i . Then, a decoding scheme is used so that the votes of all

inary OvO outputs are combined. For this, the same code matrix

 c is used to compute the summed class output vector z consist-

ng of K elements:

 = M c ˆ y . (7)

Note that this means that output vector should be similar to

he corresponding values in the specific row in the code matrix, al-

hough don’t care values are not important to get a large summed

ote. Finally, the predicted class is selected by C = argmax i z i . The

chematic representation for the deep neural network (Inception-

3) combined with the two classification methods is shown in

ig. 1 (a) and Fig. 1 (b).

.3. Analysis of the advantages of One-vs-One classification

In this subsection, we theoretically compare the One-vs-One

nd One-vs-All classification schemes. In our analysis, we will use

imple binary classifiers for separating examples of one class from

xamples of one other class or examples of all other classes. Note

hat even in deep neural networks, the final output activations are

sually computed using a weight matrix that connects the final

idden layer with each output unit. Therefore, the deep neural net-

orks need to learn to map input patterns to linearly separable fi-

al hidden-layer activations. Each classifier first computes its out-

ut o i using:

 i = w

T
i · h + b i (8)

here b i denotes the bias and w i the weight vector for output i ,

nd h denotes the vector containing all activations of the hidden

nits that are connected to the outputs. The OvA models use the

oftmax activation function to compute the class probabilities ˆ y i =
e o i ∑

j e
o j

and the predicted class is given by C = argmax i ̂ y i .

For simplicity reasons, in our analysis, the OvO models use a

igmoid activation function to discriminate between each pair of

lasses: f i j = σ (o i j) , and we assume that f i j = 1 − f ji for all i � = j

nd zero otherwise. Furthermore, we do not require these OvO

odels to output values close to 0.5 for different classes than the

nes that are separated by the model. Note that the tanh activation

unction is a scaled sigmoid: tanh (x) = 2 σ (2 x) − 1 , so this does

4 P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528

Fig. 1. The pipeline of the CNN showing a compact representation of Inception-V3 combined with the two classification systems; (a) One-vs-All (b) Multi-class One-vs-One.

Note that the (. . .) represents several chains of neural network layers.

C

C

w

p

a

O

c

i

t

r

s

v

F

r

A

f

h

s

b

t

o

not impact our analysis. The predicted class for this OvO scheme

on a test example is given by C = argmax i
∑

j f i j .

We assume a dataset S = { (x 1 , C 1) , . . . , (x n , C n) } , where C i de-

notes the number of the correct output class for input x i . First, we

analyze if the OvO scheme is more powerful than the OvA scheme

when separating different classes, for which we define multi-class

separability for OvA and OvO.

Definition: OvA separability. A mapping h = g(x , θ) separates

all training examples with the OvA scheme, if there exist weight

vectors w i and biases b i such that argmax i ̂ y i = argmax i w

T
i
h + b i =

for all (x , C) ∈ S .

Definition: OvO separability. A mapping h = g(x , θ) separates

all training examples with the OvO scheme, if there exist vectors

w ij and scalars b ij s.t. argmax i
∑

j f i j = argmax i
∑

j σ (w

T
ij

h + b i j) =
for all (x , C) ∈ S .

We will first give an example with three linearly separable

classes so that both the OvA and OvO scheme construct three de-

cision boundaries, see Fig. 2 (a). It should be clear that the three

classes in Fig. 2 (a) are linearly separable with OvA and OvO.

The optimal decision boundaries are illustrated in Fig. 3 (a) and

Fig. 3 (b).
When we compare the decision boundaries for OvA and OvO,

e observe several differences. First, the decision boundaries are

laced in different ways. E.g., the red and green classes are sep-

rated by OvO by a vertical line in the middle. Second, with the

vO scheme, there is always one class that wins against all other

lasses for each input. For the OvA scheme, there are possible

nputs for which there is no unique winner, such as points in

he bottom left area where both the blue circle class and the

ed square class may have high outputs. The predicted class in

uch areas would depend on the exact weight vectors and bias

alues.

Now, let us examine the more complex problem shown in

ig. 2 (b). The OvA scheme will have difficulties to learn to sepa-

ate the blue circles from the examples of the other two classes.

lthough learning the correct decision boundaries is complicated

or the OvA scheme, it is still possible. The blue-class model could

ave a higher bias value than the other models and be less sen-

itive to the input, and the other two classes could learn decision

oundaries based on the x-axis. The OvO scheme can easily solve

his problem, however, because linear divisions between each pair

f classes are not hard to construct.

P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528 5

Fig. 2. Three different multi-class problems of different complexities.

Fig. 3. The optimal decision boundaries.

A
0

B DC
1 2 3 h

Fig. 4. 1D-Problem with 4 classes.

c

s

s

l

t

d

o

a

o

b

t

o

a

O

h

e

s

e

1

p

h

c

h

(

T

I

t

F

c

w

m

t

b

w

d

e

s

e

l

w

w

t

m

p

a

m

f

w

w
If we make the problem even more complex and add more

lasses, such as in Fig. 2 (c), it seems impossible for the OvA

cheme to separate all classes. However, also in this case the OvA

cheme can linearly separate the classes, which we will prove be-

ow. It should be noted that it is much easier for the OvO scheme

o handle such a dataset.

Now, suppose we have a dataset with K classes and one input

imension h , in which each class is linearly separable from each

ther class using the OvO scheme. Fig. 4 shows an example of such

 problem with 4 classes A, B, C , and D . Note that for simplicity, we

nly drew a single data point for each class, but the analysis can

e easily extended to multiple data points, as long as they lie close

ogether. We now make the following proposition:

Proposition 1: If all pairs of classes are linearly separable (in

ne dimension), then the OvA scheme can also linearly separate

ll classes, but requires larger weight values to do this than the

vO scheme.

Proof of proposition 1: We assume we have K points

 1 , h 2 , . . . , h K and K OvA models f i (h) = w i h + b i . We require that

ach model f i outputs the largest value on point h i : f i (h i) ≥
f j (h i) + R for all i, j ∈ { 1 , 2 , . . . , K}; i � = j. Here R is a positive con-

tant that ensures the differences between model outputs are large

nough so that the softmax function would output a value close to

 for the winning class (e.g. R = 3).

It is not difficult to develop an algorithm that constructs the

arameters w i , b i for all models f i such that the above requirement

olds. Let’s look at the example of Fig. 4 again. In this example

lass A belongs to point h = 0 , B to h = 1 , C to h = 2 , and D to

 = 3 . We have four models f z (h) = w z h + b z , where z is the label
 A, B, C , or D). For separating A and B , we require:

f A (0) = f B (0) + R and f B (1) = f A (1) + R. (9)

here are multiple solutions, let’s say we select:

f A (h) = −Rh + 0 . 5 R and f B (h) = Rh − 0 . 5 R. (10)

t is easy to verify that the previous requirement is fulfilled with

hese two models. Now, for class C , we require:

f B (1) = f C (1) + R and f C (2) = f B (2) + R. (11)

rom which follows: f C (h) = 3 Rh − 3 . 5 R . When we continue this

onstruction process, we also derive: f D (h) = 5 Rh − 8 . 5 R .

We observe that the function max i f i is piece-wise linear convex,

hich is illustrated for the models for A, B , and C in Fig. 5 a.

It is easy to show that the algorithm can be generalized to

ultiple input dimensions. In the 1D case, we observed that

he weights increase by 2 R for each additional model, while the

ias values become very negative. This finally leads to substantial

eight values when there are many classes, and consequently, will

ecrease the generalization power. The weight-increase factor for

ach additional model depends on other problem-specific settings,

uch as the distance between examples in feature space δ (in our

xample δ = 1), and the number of dimensions of the final hidden

ayer, H .

When dealing with H dimensions, the increase of the single

eight can be spread over the H dimensions, so the increase of

eights is 2 R
H for each additional class. Therefore, projecting inputs

o many hidden dimensions helps to have smaller weights, but

any hidden units may also worsen generalization. When exam-

les of different classes are closer together, the margin decreases,

nd the weight increase has to be multiplied with

1
δ

. This also

eans that unbounded activation functions (e.g., ReLU) are useful

or obtaining smaller weights in the final classification layer. When

e take all these factors together, the OvA scheme’s largest weight

ould be of the order KR
δH

. E.g., for 50 classes (K = 50), δ = 0 . 1 ,

6 P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528

Fig. 5. The solutions for the 1D problem.

a

a

c

3

s

(

f

l

P

T

v

s

o

d

s

d

u

3

m

p

3

t

i

f

M

a

p

a

3

t

d

c

B

v

t

b

w

w

t

d

t

r

a

R = 3 , and H = 100 , the largest weights in the final classification

layer could be around 15.

Now, examine how the OvO scheme solves the above problem.

In this scheme, we use models of the form f i j (h) = w i j h + b i j . For

the first classes A and B , we require: f AB (0) = R and f AB (1) = −R to

ensure that after applying the sigmoid function, the model incurs

a small loss.

It is easy to see that for f AB (h) the weight w AB equals −2 R, sim-

ilar to the OvA scheme. However, the different models do not de-

pend on each other, and therefore the weights do not need to in-

crease continuously. Furthermore, models that separate examples

that are farther away from each other, such as f AD (h), can have

much smaller weight values. The solution of the OvO scheme to

the one-dimensional problem is illustrated in Fig. 5 (b).

This concludes our proof of proposition 1. Both classification

schemes can be used to separate the data projected to one di-

mension as long as examples of different classes lie close together,

but the OvA model needs much larger weights if there are many

classes. Another problem with the OvA scheme is that the differ-

ent outputs heavily depend on each other. When one binary OvA

classifier is adapted, other outputs have to be changed as well. Fur-

thermore, when some outputs use large weight vectors in the fi-

nal layer, their errors can have a significant impact on the training

process. These two factors may increase instabilities of the training

process.

The learned representation can indeed make up for the prob-

lems of the OvA scheme. For example, when the final hidden layer

is very large, it is easier to learn decision boundaries with OvA.

However, this could lead to strange generalization effects, as has

also been shown in research on adversarial examples [27] . Further-

more, in the OvO scheme, outputs are affected by other outputs

due to the shared feature-learning part, but this dependence also

occurs for the OvA models. To conclude, the OvO scheme has the

following advantages compared to the OvA scheme:

• The OvO scheme can have better generalization properties than

the OvA scheme because there is less need for large weight vec-

tors or a broad final feature representation, which is connected

to the classification layer.
• In the OvA scheme, each binary classifier (output) is much

more dependent on the other binary classifiers than in the OvO

scheme, which could increase problems with learning instabili-

ties.
• The OvO scheme does not introduce artificial class imbalances,

whereas the OvA scheme does. If the dataset is balanced, the

problem for each OvO classifier is balanced as well. For the

OvA scheme, the dataset for each independent classifier is im-

balanced.

Finally, we want to mention that although in general the OvO

scheme requires training K(K − 1) / 2 different classifiers and there-

fore could cost much more training time than the OvA scheme, in

our proposed architecture this is not the case. In the proposed OvO

method, a single deep network is used that is trained on each ex-
mple in the same way as in the OvA scheme. Only when there

re very many classes (like thousands), the OvO scheme would be-

ome complex to store and train.

. Datasets and data augmentation techniques

As mentioned in the introduction, plant image recognition

ystems have many applications. Convolutional neural networks

CNNs) have obtained remarkable results on different datasets

or image-based plant classification [23,28–30] . In [31] , two deep

earning architectures, AlexNet and GoogLeNet, were trained on the

lantVillage dataset to detect plant leaves that contain diseases.

he work described in [32] compared instances of Inception-V4,

arious instances of ResNet, and few other CNN models to clas-

ify diseases in plant images. Some works have also applied several

ther techniques to boost recognition performances, such as using

ifferent kinds of data augmentation [33,34] and transfer learning

chemes [35] .

In this section, we briefly describe the three different plant

atasets, the monkey dataset, and the data augmentation methods

sed in our study.

.1. Datasets

In this subsection, we describe the three plant datasets and the

onkey dataset used in the experiments. Fig. 6 shows some exam-

le images from the plant datasets.

.1.1. Agrilplant dataset

The AgrilPlant dataset was introduced in [36] . The dataset con-

ains 30 0 0 plant images with a uniformly distributed number of

mages per class. It contains 10 classes: Apple, Banana, Grape, Jack-

ruit, Orange, Papaya, Persimmon, Pineapple, Sunflower, and Tulip.

ost of the images within this dataset contain variances in pose

nd object backgrounds. The dataset images were split in the pro-

ortion of 20% used for testing, and the remaining 80% of the im-

ges used for training.

.1.2. Tropic dataset

The Tropic dataset contains 20 classes of plants with a to-

al of 5276 images. Each of the classes contains a non-uniform

istribution of images, varying from 221 to 371 images per

lass. The dataset contains the following plants: Acacia, Ashoka,

amboo, Banyan, Chinese wormwood, Croton, Crown flower, Er-

atamia, Golden shower, Hibiscus, Lady palm, Lime, Mango, Manila

amarind, Poinsettia, Raspberry ice Bougainvillea, Sanchezia, Um-

rella tree, West Indian jasmine, and White plumeria. The images

ere collected by us during the day using a DSLR camera. The data

as collected from diverse locations in Northeastern Thailand. All

he images have similarities in illumination conditions but show

ifferent plant parts (flowers, branches, fruits, leaves, or the whole

ree) and background information such as sky, houses, and soil. We

andomly split the dataset in the ratio of 70% / 30% for the training

nd the testing set.

P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528 7

Fig. 6. Some example images from the three plant datasets for which we show one image per class for some classes in the datasets. The first row shows AgrilPlant images,

the second row shows Tropic images, and the last row shows Swedish leaf images.

Fig. 7. Some example images from the Monkey-10 dataset for which we show one image per class for all classes in the dataset.

3

w

b

s

a

3

a

o

i

i

J

v

m

f

f

i

f

u

f

T

p

i

3

d

i

w

a

w

a

w

f

t

4

w

t

w

C

4

p

p

.1.3. Swedish dataset

The Swedish dataset [37] contains 1125 leaf images of 15 classes

ith 75 images per class. The leaf images were taken on a plain

ackground. We adopted the same dataset splits as in previous

tudies using 25 randomly selected images per class for training

nd the rest of the images for testing.

.1.4. Monkey-10 dataset

The Monkey-10 dataset 1 contains approximately 1400 images

nd 10 classes, and each class corresponds to a different species

f monkeys. Each of the classes contains approximately 110 train-

ng images and 27 test images. The dataset consists of the follow-

ng monkey species: Mantled howler, Patas monkey, Bald uakari,

apanese macaque, Pygmy marmoset, White-headed capuchin, Sil-

ery marmoset, Common squirrel monkey, Black-headed night

onkey, and Nilgiri langur. Fig. 7 shows some example images

rom the Monkey-10 dataset.

The Monkey-10 dataset was primarily used to observe if per-

ormance differences between the OvO and OvA schemes general-

ze to a different kind of fine-grained species dataset. Additionally,

rom the original Monkey-10 dataset, we randomly selected a non-

niform distribution of images from the training set, which varies

rom 10 to 120 images per class to create an imbalanced dataset.

his dataset is called Imbalanced-Monkey-10 and serves as a pur-

ose to study if the OvO or OvA scheme can better handle strongly

mbalanced classes.

.2. Data augmentation techniques

We applied three online data augmentation (DA) approaches

uring the training of the CNNs. The data-augmentation operations
1 https://www.kaggle.com/slothkong/10-monkey-species .

nvolve horizontal flipping, vertically shifting images up or down

ith random values with a maximum of 10% of the image height,

nd horizontally shifting images left or right with random values

ith a maximum of 10% of the image width (where novel pixels

re filled in using nearest pixel values). These operation schemes

ere applied to all the training images of the datasets. The reason

or using DA is to increase the size of the training dataset when

raining the CNN models.

. Experimental setup

In this section, we present the different experimental setups in

hich we subsample the total amount of images and classes from

he three plant datasets and the two monkey datasets. Afterwards

e describe the experimental parameters used for training the two

NNs, Inception-V3 and ResNet-50.

.1. Dataset sampling

This subsection describes two different forms of dataset sam-

ling to obtain more dataset subsets that will be used in the ex-

eriments:

1. Dataset subsets with fewer classes: In the AgrilPlant dataset, we

additionally considered 5 randomly selected classes from the

original dataset; this version of the dataset is called AgrilPlant5

while the original dataset is called AgrilPlant10. For the Tropic

dataset, we considered two additional subsets from the original

dataset, which involves the random selection of 5 or 10 classes

from the original dataset. Hence, we name the new and original

datasets (Tropic5, Tropic10) and Tropic20, respectively. Similar

considerations were made on the Swedish dataset for 5 and 10

randomly selected classes. Hence, this results in the new subset

https://www.kaggle.com/slothkong/10-monkey-species

8 P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528

Table 1

Number of training images per class after sub-sampling the datasets.

Train size Dataset

(%) AgrilPlant Tropic Swedish Monkey Imbalanced-Monkey

10 24 15–26 2–3 10–12 1–12

20 48 31–52 5 21–24 2–24

50 120 77–130 12–13 52–61 5–61

80 192 124–207 20 84–98 8–98

100 240 155–259 25 105–120 10–120

o

5

t

w

i

t

d

5

c

r

5

s

t

variants; Swedish5 and Swedish10, while the original dataset is

called Swedish15.

2. Dataset subsets in which the original training image examples

(100%) were distributed into 10%, 20%, 50%, and 80% of the

whole training set based on a random selection of the images.

Table 1 shows the number of images per class of the datasets

after sub-sampling. Note that the testing sets for the datasets

were kept constant. Furthermore, we provide notations for de-

scribing the datasets using: < dataset name > < number of

classes > ::ts < train size > . For example, Tropic20::ts10 de-

notes the Tropic dataset with 20 classes containing 10% of the

training data.

The reason for performing experiments with the sub-sampling

dataset variations is to determine how the CNN architectures com-

bined with either the OvO or OvA classification system can deal

with recognizing images under different conditions. The primary

goal is to assess the performance variations of the two different

classification schemes.

4.2. Deep CNN training schemes

Deep neural network architectures consist of several chains of

neural network layers and operations: convolutional, normaliza-

tion, non-linear activation functions, pooling, fully connected, and

the final classification layer. In this study, we perform experiments

with architectures which use inception modules (Inception-V3),

and residual modules (ResNet-50). We chose these deep CNN ar-

chitectures, because they are well known state-of-the-art architec-

tures, but are based on different operations (inception or residual

modules).

We trained the CNN models with two training schemes using

the scratch or pre-trained version based on their use of random

weights or pre-trained weights from the ImageNet dataset. Each

of the training schemes employs the previously described deep

convolutional neural networks (Inception-V3 and ResNet-50) com-

bined with the OvA and OvO classification systems. The hyper-

parameters were optimized using several preliminary experiments.

1. Scratch Experiments. The following experimental parameters

were used: the previously described CNNs were initialized with

random weights and trained for 200 epochs while optimizing

the CNN loss function with the Adam optimizer, a batch size of

16, and a learning rate l r = 0 . 001 . The l r decay uses a factor of

0.1 after every interval of 50 epochs. The scratch experiments

on all the datasets were run within the computing time frame

of [10 − 130] minutes, depending on the given dataset/subset.

2. Fine-tuning Experiments. The following experimental parame-

ters were used: the previously described CNNs were initial-

ized with pre-trained weights from the ImageNet dataset. These

models are trained for 100 epochs while optimizing the CNN

loss function with the Adam optimizer, a batch size of 16, and

a learning rate l r = 0 . 0 0 01 . The l r decay uses a factor of 0.1 af-

ter 50 epochs. The fine-tuning experiments on all the datasets

were run within the computing time frame of [6 − 66] minutes,
depending on the given dataset/subset.
For all experiments, we used an NVIDIA V100 GPU with 28GB

f memory.

. Results and discussion

In this section, we present the classification performances of

he two CNN methods (Inception-V3 and ResNet-50) combined

ith the two classification schemes (OvO and OvA) trained us-

ng the scratch or pre-trained instances of the CNN models on the

hree plant datasets, the monkey datasets, and some of the plant

atasets without data augmentation on the training sets.

.1. Results of scratch-Inception-V3

We trained the scratch Inception-V3 CNN based on five-fold

ross-validation. The results obtained during the testing phase are

eported in Table 2 .

1. Evaluation of the CNN on the AgrilPlant Dataset: from Table 2 a,

we observe that training Scratch-Inception-V3 (CNN) combined

with OvO significantly outperforms the CNN combined with

OvA (p < 0.05) on 3 dataset subsets with a smaller training

size. Another observation is that the CNN combined with OvO

surpasses the CNN combined with OvA on the AgrilPlant5::ts10

dataset with a significant difference of ~ 5.5%.

2. Evaluation of the CNN on the Tropic Dataset: from Table 2 (b),

we observe that training Scratch-Inception-V3 combined with

OvO significantly outperforms the CNN combined with OvA

(p < 0.05) on 6 dataset subsets.

3. Evaluation of the CNN on the Swedish Dataset: from Table 2 (c),

we observe that training the CNN combined with OvO signifi-

cantly outperforms the CNN combined with OvA (p < 0.05) on

8 datasets (subsets or whole). Another observation is that the

CNN combined with OvO surpasses the CNN combined with

OvA on the Swedish10::ts10 dataset with a significant differ-

ence of 8.5%.

.2. Results of scratch-ResNet-50

We trained the scratch ResNet-50 combined with the two clas-

ification schemes using five-fold cross-validation. The results ob-

ained during the testing phase are reported in Table 3 .

1. Evaluation of the CNN on the AgrilPlant Dataset: from

Table 3 (a), we observe that training Scratch-ResNet-50 com-

bined with OvO significantly outperforms the CNN combined

with OvA on 4 smaller subsets.

2. Evaluation of the CNN on the Tropic Dataset: from Table 3 (b),

we observe that training the CNN combined with OvO signif-

icantly outperforms the CNN combined with OvA on 6 sub-

sets of this dataset. Another observation is that the CNN com-

bined with OvO surpasses the CNN combined with OvA on

the Tropic10::ts{10,20} subsets with a significant difference of

~ 5%.

P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528 9

Table 2

Recognition performances (average accuracy and standard deviation) of Scratch-Inception-V3 combined with the

two classification methods. The bold numbers indicate significant differences between the classification methods

(p < 0.05).

(a) The AgrilPlant dataset

Train size AgrilPlant5 AgrilPlant10

(%) OvO OvA OvO OvA

10 77.13 ± 1.28 71.67 ± 2.67 77.80 ± 3.00 73.57 ± 1.47

20 85.47 ± 2.10 83.33 ± 3.47 86.97 ± 1.69 85.87 ± 1.57

50 92.40 ± 0.86 89.73 ± 1.19 94.87 ± 1.00 94.57 ± 1.23

80 94.47 ± 0.90 94.33 ± 0.53 96.47 ± 0.69 96.60 ± 0.73

100 94.93 ± 0.37 94.80 ± 1.02 96.90 ± 0.65 97.40 ± 0.67

(b)The Tropic dataset

Train size Tropic5 Tropic10 Tropic20

(%) OvO OvA OvO OvA OvO OvA

10 82.24 ± 1.91 78.76 ± 2.09 75.14 ± 2.73 70.46 ± 3.22 66.51 ± 4.72 65.93 ± 3.31

20 89.06 ± 1.55 89.40 ± 1.47 86.77 ± 1.14 83.43 ± 2.06 81.48 ± 4.52 80.57 ± 1.35

50 97.19 ± 0.66 95.74 ± 1.15 95.59 ± 1.28 94.78 ± 0.34 94.62 ± 1.67 94.47 ± 0.46

80 98.84 ± 0.53 98.02 ± 0.47 98.38 ± 0.70 97.42 ± 0.73 97.87 ± 0.34 97.21 ± 0.31

100 99.13 ± 0.51 98.30 ± 1.06 98.56 ± 0.46 98.54 ± 0.22 98.18 ± 0.96 98.03 ± 0.14

(c)The Swedish dataset

Train size Swedish5 Swedish10 Swedish15

(%) OvO OvA OvO OvA OvO OvA

10 71.60 ± 4.24 66.08 ± 3.01 79.52 ± 3.43 70.96 ± 4.19 72.91 ± 5.29 65.41 ± 3.32

20 86.40 ± 2.61 86.96 ± 4.36 91.84 ± 2.25 85.60 ± 3.90 88.73 ± 1.98 84.99 ± 2.71

50 98.40 ± 0.75 95.36 ± 2.63 97.36 ± 0.86 97.36 ± 0.96 95.71 ± 1.41 94.99 ± 1.85

80 99.36 ± 0.36 98.56 ± 0.61 99.20 ± 0.58 98.48 ± 0.39 98.19 ± 0.49 97.41 ± 0.75

100 99.76 ± 0.36 99.44 ± 0.67 99.48 ± 0.18 99.00 ± 0.51 98.59 ± 0.28 97.76 ± 0.45

Table 3

Recognition performances (average accuracy and standard deviation) of Scratch-ResNet-50 combined with the two

classification methods. The bold numbers indicate significant differences between the classification methods (p <

. 05).

(a) The AgrilPlant dataset

Train size AgrilPlant5 AgrilPlant10

(%) OvO OvA OvO OvA

10 77.53 ± 0.96 72.93 ± 3.85 76.23 ± 2.06 72.93 ± 2.04

20 85.40 ± 0.64 82.73 ± 2.29 86.03 ± 1.29 84.20 ± 1.91

50 91.47 ± 0.90 89.87 ± 0.77 93.13 ± 0.46 93.20 ± 0.83

80 93.53 ± 1.22 93.73 ± 1.50 96.00 ± 0.53 95.03 ± 1.19

100 94.33 ± 0.94 93.87 ± 2.06 96.10 ± 0.38 96.23 ± 0.85

(b) The Tropic dataset

Train size Tropic5 Tropic10 Tropic20

(%) OvO OvA OvO OvA OvO OvA

10 77.31 ± 1.05 73.59 ± 2.63 67.57 ± 3.44 62.38 ± 1.42 59.78 ± 2.05 59.59 ± 2.27

20 87.41 ± 3.72 83.35 ± 3.45 82.57 ± 1.75 77.85 ± 2.10 79.79 ± 0.72 76.61 ± 1.31

50 93.47 ± 2.48 91.19 ± 2.40 93.45 ± 1.20 93.09 ± 0.76 93.31 ± 0.61 93.11 ± 1.02

80 97.29 ± 1.35 96.23 ± 0.89 96.45 ± 1.20 96.43 ± 0.88 96.49 ± 0.48 95.70 ± 0.70

100 98.64 ± 0.82 97.48 ± 0.44 97.44 ± 0.42 97.10 ± 0.57 97.59 ± 0.23 96.80 ± 0.43

(c) The Swedish dataset

Train size Swedish5 Swedish10 Swedish15

(%) OvO OvA OvO OvA OvO OvA

10 75.20 ± 1.96 71.76 ± 1.95 73.52 ± 3.57 63.44 ± 1.99 66.11 ± 4.18 66.83 ± 2.49

20 86.80 ± 3.26 83.53 ± 1.61 82.32 ± 4.81 83.60 ± 2.53 84.05 ± 4.12 82.21 ± 1.81

50 96.08 ± 0.95 96.48 ± 1.34 95.56 ± 0.83 95.68 ± 0.99 93.31 ± 0.90 93.15 ± 1.20

80 98.24 ± 0.83 97.92 ± 0.91 98.00 ± 0.40 97.12 ± 0.46 96.19 ± 1.00 96.03 ± 0.61

100 98.96 ± 0.46 98.72 ± 0.52 98.40 ± 0.37 98.32 ± 0.23 97.28 ± 0.35 96.24 ± 0.94

5

c

shown in Table 4 .
3. Evaluation of the CNN on the Swedish Dataset: from Table 3 (c),

we observe that training the CNN combined with OvO signif-

icantly outperforms the CNN combined with OvA on 4 sub-

sets of this dataset. Furthermore, the CNN combined with OvO

surpasses the CNN combined with OvA on the Swedish10::ts10

dataset with a difference of ~ 10%.
.3. Results of fine-tuned inception-V3

We trained the pre-trained Inception-V3 based on five-fold

ross-validation. The results obtained during the testing phase are

10 P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528

Table 4

Recognition performances (average accuracy and standard deviation) of Fine-tuned-Inception-V3 combined with the

two classification methods. The bold numbers indicate significant differences between the classification methods

(p < . 05).

(a) The AgrilPlant dataset

Train size AgrilPlant5 AgrilPlant10

(%) OvO OvA OvO OvA

10 88.67 ± 2.13 90.40 ± 2.42 92.13 ± 1.52 94.87 ± 0.88

20 92.27 ± 2.09 92.07 ± 1.86 94.47 ± 1.77 96.67 ± 0.59

50 96.20 ± 1.66 96.27 ± 1.14 97.13 ± 1.02 98.03 ± 0.77

80 96.27 ± 1.16 97.53 ± 0.69 97.93 ± 0.51 98.77 ± 0.57

100 97.00 ± 1.18 97.07 ± 1.23 98.07 ± 0.56 98.83 ± 0.53

(b) The Tropic dataset

Train size Tropic5 Tropic10 Tropic20

(%) OvO OvA OvO OvA OvO OvA

10 97.15 ± 1.72 96.61 ± 2.50 92.93 ± 1.21 94.60 ± 1.52 90.42 ± 2.88 93.60 ± 0.94

20 97.39 ± 1.22 98.74 ± 0.99 96.01 ± 0.98 98.25 ± 0.57 95.70 ± 0.36 96.67 ± 0.52

50 99.32 ± 0.32 99.47 ± 0.56 98.75 ± 0.27 99.53 ± 0.41 98.43 ± 0.21 99.20 ± 0.10

80 99.66 ± 0.13 99.61 ± 0.22 99.32 ± 0.23 99.79 ± 0.15 99.05 ± 0.35 99.46 ± 0.23

100 99.76 ± 0.24 99.81 ± 0.32 99.56 ± 0.22 99.87 ± 0.16 99.33 ± 0.09 99.68 ± 0.12

(c) The Swedish dataset

Train size Swedish5 Swedish10 Swedish15

(%) OvO OvA OvO OvA OvO OvA

10 94.88 ± 4.10 92.48 ± 4.23 84.56 ± 2.56 91.72 ± 4.44 87.52 ± 4.78 86.11 ± 2.04

20 97.44 ± 3.26 97.52 ± 3.06 97.68 ± 1.40 98.96 ± 0.71 95.55 ± 2.34 94.48 ± 3.33

50 99.68 ± 0.18 99.98 ± 0.04 99.72 ± 0.11 99.84 ± 0.17 99.23 ± 0.40 99.20 ± 0.21

80 99.92 ± 0.18 99.92 ± 0.18 99.76 ± 0.17 99.88 ± 0.11 99.60 ± 0.27 99.81 ± 0.20

100 99.92 ± 0.18 99.92 ± 0.18 99.92 ± 0.11 99.92 ± 0.18 99.79 ± 0.15 99.97 ± 0.06

Table 5

Recognition performances (average accuracy and standard deviation) of Fine-tuned ResNet-50 combined with the

two classification methods. The bold numbers indicate significant differences between the classification methods

(p < . 05).

(a) The AgrilPlant dataset

Train size AgrilPlant5 AgrilPlant10

(%) OvO OvA OvO OvA

10 91.13 ± 1.39 89.47 ± 3.03 93.13 ± 1.57 93.17 ± 0.31

20 93.93 ± 2.47 92.40 ± 1.16 95.83 ± 1.87 96.17 ± 0.87

50 96.33 ± 1.62 96.07 ± 0.64 97.73 ± 1.11 97.67 ± 0.94

80 97.27 ± 0.86 97.07 ± 1.34 98.40 ± 0.48 98.47 ± 0.40

100 97.60 ± 1.44 97.33 ± 1.33 98.47 ± 0.70 98.63 ± 0.70

(b) The Tropic dataset

Train size Tropic5 Tropic10 Tropic20

(%) OvO OvA OvO OvA OvO OvA

10 96.80 ± 1.45 96.61 ± 1.20 92.54 ± 1.91 91.96 ± 1.20 90.54 ± 1.09 90.76 ± 1.40

20 98.16 ± 0.88 97.87 ± 1.09 95.80 ± 0.89 97.70 ± 0.30 93.96 ± 0.49 96.27 ± 0.42

50 99.52 ± 0.38 99.22 ± 0.47 98.72 ± 0.29 99.19 ± 0.17 98.17 ± 0.63 99.05 ± 0.10

80 99.66 ± 0.37 99.56 ± 0.32 99.24 ± 0.28 99.71 ± 0.25 98.80 ± 0.21 99.38 ± 0.15

100 99.66 ± 0.28 99.76 ± 0.24 99.58 ± 0.11 99.71 ± 0.17 99.23 ± 0.18 99.49 ± 0.16

(c) The Swedish dataset

Train size Swedish5 Swedish10 Swedish15

(%) OvO OvA OvO OvA OvO OvA

10 90.48 ± 4.79 89.68 ± 6.14 90.40 ± 2.37 87.88 ± 1.88 84.32 ± 4.39 85.47 ± 3.22

20 97.44 ± 1.85 98.08 ± 2.14 98.76 ± 0.96 96.80 ± 2.04 97.47 ± 2.54 94.32 ± 3.62

50 99.76 ± 0.36 99.60 ± 0.28 99.60 ± 0.20 99.72 ± 0.23 99.47 ± 0.27 99.49 ± 0.33

80 99.76 ± 0.36 99.92 ± 0.18 99.92 ± 0.18 99.68 ± 0.39 99.71 ± 0.17 99.79 ± 0.24

100 99.92 ± 0.18 99.92 ± 0.18 99.92 ± 0.11 99.92 ± 0.18 99.65 ± 0.49 99.68 ± 0.20

1. Evaluation of the CNN on the AgrilPlant Dataset: from

Table 4 (a), the results show that there are 3 subsets of this

dataset where training the Fine-tuned-Inception-V3 combined

with OvA significantly outperforms the CNN combined with

OvO.

2. Evaluation of the CNN on the Tropic Dataset: from Table 4 (b),

we observe that the CNN combined with OvA significantly out-
performs the CNN combined with OvO on 8 subsets of the

Tropic10 and Tropic20 datasets.

3. Evaluation of the CNN on the Swedish Dataset: from Table 4 (c),

we observe that training the CNN combined with OvA sig-

nificantly outperforms the CNN combined with OvO on 3

subsets of this dataset. Another observation is that the CNN

combined with OvA surpasses the CNN combined with OvO

P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528 11

5

t

T

T

5

w

d

f

a

5

w

A

t

T

T

w

o

~

w

t

Table 6

Recognition performances (average accuracy and standard deviation) of the stud-

ied CNNs combined with the two classification methods applied on the Monkey-10

datasets. The bold numbers indicate significant differences between the classifica-

tion methods (p < . 05).

(a) Scratch Inception-V3

Train size Monkey10 Imbalanced-Monkey10

(%) OvO OvA OvO OvA

10 55.91 ± 1.12 48.68 ± 5.35 38.11 ± 3.38 35.04 ± 3.49

20 68.91 ± 2.45 61.47 ± 3.70 48.24 ± 4.90 41.17 ± 4.78

50 86.28 ± 0.63 84.10 ± 1.95 66.79 ± 1.99 61.97 ± 2.63

80 93.00 ± 1.73 90.94 ± 1.94 75.33 ± 1.67 72.04 ± 3.31

100 94.16 ± 1.70 92.69 ± 1.19 78.25 ± 1.78 75.99 ± 2.34

(b) Scratch Resnet-50

Train size Monkey10 Imbalanced-Monkey10

(%) OvO OvA OvO OvA

10 54.52 ± 2.49 49.49 ± 0.98 36.43 ± 4.20 34.39 ± 2.41

20 67.66 ± 3.48 62.91 ± 3.27 42.57 ± 5.79 40.64 ± 3.43

50 80.81 ± 2.83 81.46 ± 1.19 63.64 ± 3.00 59.55 ± 3.10

80 89.56 ± 2.07 89.64 ± 0.71 70.22 ± 3.89 68.32 ± 2.77

100 92.33 ± 1.41 90.73 ± 1.30 74.53 ± 2.47 72.47 ± 3.39

(c) Fine-tuned Inception-V3

Train size Monkey10 Imbalanced-Monkey10

(%) OvO OvA OvO OvA

10 95.69 ± 1.42 96.86 ± 1.32 78.85 ± 6.24 75.11 ± 2.67

20 97.44 ± 1.07 97.15 ± 2.03 84.32 ± 3.27 84.46 ± 4.81

50 97.52 ± 0.73 98.17 ± 0.94 93.22 ± 2.61 94.66 ± 2.07

80 97.67 ± 1.15 99.13 ± 0.41 93.86 ± 1.88 96.57 ± 1.39

100 98.76 ± 0.66 99.27 ± 0.52 94.66 ± 2.49 96.42 ± 1.61

(d) Fine-tuned Resnet-50

Train size Monkey10 Imbalanced-Monkey10

(%) OvO OvA OvO OvA

10 92.40 ± 1.75 91.61 ± 1.35 64.15 ± 2.95 63.93 ± 2.96

20 94.53 ± 1.53 94.37 ± 2.24 79.85 ± 1.68 74.17 ± 5.89

50 95.77 ± 0.97 96.79 ± 1.65 89.70 ± 2.44 85.41 ± 4.48

80 97.37 ± 0.64 97.37 ± 1.40 92.55 ± 2.06 91.61 ± 2.67

100 97.66 ± 1.36 97.96 ± 0.48 93.86 ± 1.79 91.69 ± 1.73

w

m

1

f

5

t

s

w
on the Swedish10::ts10 dataset with a significant difference

of ~ 7%.

.4. Results of fine-tuned ResNet-50

We trained the pre-trained ResNet-50 combined with the

wo classification methods based on five-fold cross-validation.

he results obtained during the testing phase are reported in

able 5 .

1. Evaluation of the CNN on the AgrilPlant Dataset: from

Table 5 (a), we observe that training the CNN combined with

OvO results in similar performance levels to the CNN combined

with OvA on this dataset.

2. Evaluation of the CNN on the Tropic Dataset: from Table 5 (b),

we observe that training the CNN combined with OvA signifi-

cantly outperforms the CNN combined with OvO on 7 subsets

of the datasets with more classes.

3. Evaluation of the CNN on the Swedish Dataset: from Table 5 (c),

the results show that there is no significant difference between

training the CNN with the two classification methods on all

subsets of this dataset.

.5. Results on the monkey datasets

We trained the two CNNs from scratch or using pre-trained

eights using the two classification methods on the two monkey

atasets, Monkey-10 and Imbalanced-Monkey-10, based on five-

old cross-validation. The results obtained during the testing phase

re reported in Table 6 .

1. Evaluation of Scratch Inception-V3 on the Monkey-10 and

Imbalanced-Monkey-10 datasets: from Table 6 (a), we observe

that training the CNN combined with OvO significantly outper-

forms the CNN combined with OvA on 5 (smaller) subsets of

the Monkey-10 datasets with several times significant differ-

ences of ~ 7%.

2. Evaluation of Scratch Resnet-50 on the Monkey-10 and

Imbalanced-Monkey-10 datasets: from Table 6 (b), we observe

that training the CNN combined with OvO on Monkey-10 re-

sults in one case in a significantly better performance (Mon-

key10:ts10) with a significant difference of 5%.

3. Evaluation of Fine-tuned Inception-V3 on the Monkey-10 and

Imbalanced-Monkey-10 datasets: from Table 6 (c), we observe

that training the CNN combined with OvA significantly out-

performs the CNN combined with OvO on one data subset of

Monkey-10 and Imbalanced-Monkey-10.

4. Evaluation of Fine-tuned Resnet-50 on the Monkey-10 and

Imbalanced-Monkey-10 datasets: from Table 6 (d), the results

show that there is no significant difference between train-

ing the CNN with the two classification methods on both the

Monkey-10 and the Imbalanced-Monkey-10 dataset.

.6. Results of training CNNs without data augmentation

We trained the two CNNs from scratch and using pre-trained

eights combined with the two classification methods on the

gril5::ts100 and Tropic10::ts100 datasets without data augmenta-

ion on the training data (again based on five-fold cross-validation).

he results obtained during the testing phase are reported in

able 7 .

The results show that training Scratch-ResNet-50 combined

ith OvO significantly outperforms the CNN combined with OvA

n the AgrilPlant5::ts100 dataset with a significant difference of

4%. Another observation is that the CNNs combined with OvO al-

ays perform a bit better than the CNNs combined with OvA on

hese two datasets. When we compare these results to the results
hen data augmentation is used, we can observe that data aug-

entation leads to performance improvements between 3% and

3%. We also note that especially Scratch-ResNet-50 profits a lot

rom data augmentation.

.7. Discussion

We now summarize all obtained results when data augmenta-

ion is used:

• When training the two CNNs from scratch, the OvO classifica-

tion method performs significantly better in 37 out of the 100

experiments. In this case, the OvA method never significantly

outperforms the OvO method.
• When training the two pre-trained CNNs by fine-tuning them

on the four datasets, the OvA method performs significantly

better in 23 out of the 100 experiments. In this case, the OvO

method never significantly outperforms the OvA method.
• The improvements of OvO when the CNNs are trained from

scratch are larger for smaller datasets. When we examine

dataset subsets of 10%, 20%, and 50%, the OvO scheme performs

significantly better in 29 out of 60 experiments. This agrees

with the theory stating that the OvO scheme generalizes bet-

ter than the OvA scheme.

We also observed that the training process is generally more

table with the OvO method than with the OvA scheme. In Fig. 8 ,

e show two train and test loss curves on a small dataset when

12 P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528

Table 7

Recognition performances (average accuracy and standard deviation) of the studied CNNs com-

bined with the two classification methods applied on the Agril5::ts100 and Tropic10::ts100

datasets. The bold number indicates a significant difference between the classification methods

(p < . 05).

Models AgrilPlant5::ts100 Tropic10::ts100

OvO OvA OvO OvA

Scratch-Inception-V3 91.47 ± 1.73 89.33 ± 4.43 94.15 ± 4.28 91.84 ± 5.51

Scratch-Resnet50 87.60 ± 1.57 83.53 ± 1.80 84.89 ± 0.87 84.40 ± 1.82

Fine-tuned-Inception-V3 93.40 ± 1.64 92.53 ± 2.60 96.50 ± 0.88 95.20 ± 5.04

Fine-tuned-Resnet50 92.53 ± 0.61 91.80 ± 1.79 93.74 ± 1.18 93.53 ± 1.31

Fig. 8. Two loss curves when training Scratch-ResNet-50 combined with the classification methods on the AgrilPlant10::ts10 dataset; (a) One-vs-All, and (b) One-vs-One.

v

T

t

2

i

t

I

g

p

w

c

e

O

d

e

p

a

t

p

s

a

r

i

s

training ResNet-50 from scratch. The plots clearly show a more sta-

ble learning process for OvO, which agrees with the theory that it

is beneficial to have output units which are not heavily dependent

on each other.

We finally want to mention several last points, which we no-

ticed by analyzing all results. First, the results of using pre-trained

weights are typically better than the results of training the archi-

tectures from scratch. This holds for both classification methods,

but the differences are much larger for the OvA scheme. Second,

the performances of Inception-V3 are overall a bit better than the

results of ResNet-50. The best results on the original datasets are

excellent and were obtained with the pre-trained Inception-V3 ar-

chitecture combined with the OvA scheme. The best performance

on the AgrilPlant10 dataset is 98.8% (see Table 4 (a)). The best per-

formance on the Tropic20 dataset is 99.7% (see Table 4 (b)). The

best result on the Swedish15 dataset is 99.97% (see Table 4 (c)). The

best result on the Monkey-10 dataset is 99.3% (see Table 6 (c)).

6. Conclusion

We described a novel technique for training deep neural net-

works based on the One-vs-One classification scheme. Two convo-

lutional neural network architectures were trained using the One-

vs-One scheme and the standard One-vs-All scheme on four image

datasets with different amounts of examples and classes. The re-

sults show that when the deep neural networks are trained from

scratch, the proposed method significantly outperforms the con-
entional One-vs-All training scheme in 37 out of 100 experiments.

he results also show that this is not the case when the architec-

ures were fine-tuned, for which the One-vs-All scheme wins in

1 out of 100 experiments. A possible reason why the OvA train-

ng scheme performs better with fine-tuning is that the architec-

ures were pre-trained using the One-vs-All scheme on ImageNet.

t would be interesting to train One-vs-One architectures on Ima-

eNet and study if this would improve the transfer learning results.

Future work. There are several directions that we want to ex-

lore further. First, instead of using the One-vs-One scheme, it

ould be interesting to generalize our method to the use of error-

orrecting output codes [9] . The proposed architecture can also be

xtended by connecting the One-vs-One outputs to an additional

ne-vs-All output layer.

Second, although transfer learning is very useful for solving a

ifferent image recognition problem, there are also quite differ-

nt applications involving fMRI images, 3D medical scans, or hy-

erspectral camera-images. For such pattern recognition problems,

lmost no pre-trained architectures exist. We would therefore like

o research the benefits of using One-vs-One classification for such

roblems.

Third, we want to study the benefits of using One-vs-One clas-

ification when combined with other deep neural networks, such

s recurrent neural networks (RNNs). The training process of recur-

ent neural networks is usually much less stable than when train-

ng convolutional neural networks, and it would be interesting to

tudy if the One-vs-One scheme is beneficial for training RNNs.

P. Pawara, E. Okafor and M. Groefsema et al. / Pattern Recognition 108 (2020) 107528 13

D

i

fl

A

o

a

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

P

G

f

p

E

v

p

s

m

M

t

s

i

S

v

S

s

L

G

S

a

M

f

c

d

timization.
eclaration of Competing Interest

The authors declare that they have known competing financial

nterests or personal relationships that could have appeared to in-

uence the work reported in this paper.

cknowledgments

We would like to thank the Center for Information Technology

f the University of Groningen for their support and for providing

ccess to the Peregrine high performance computing cluster.

eferences

[1] J. Schmidhuber , Deep learning in neural networks: an overview, Neural net-

works 61 (2015) 85–117 .
[2] Y. LeCun , Y. Bengio , G. Hinton , Deep learning, Nature 521 (7553) (2015) 436 .

[3] M. Aly , Survey on multiclass classification methods, Neural networks 19 (2005)

1–9 .
[4] E. Alpaydin , Introduction to machine learning, The MIT Press, 2014 .

[5] D.M.J. Tax , One-class classification: Concept learning in the absence of coun-
ter-examples, Technische Universiteit Delft, 2001 Ph.D. thesis .

[6] Tao Ban , S. Abe , Implementing multi-class classifiers by one-class classification
methods, in: The 2006 IEEE International Joint Conference on Neural Network

Proceedings, 2006, pp. 327–332 .

[7] S. Kumar , J. Ghosh , M.M. Crawford , Hierarchical fusion of multiple classifiers
for hyperspectral data analysis, Pattern Analysis and Applications 5 (2002)

210–220 .
[8] V. Vural , J.G. Dy , A hierarchical method for multi-class support vector ma-

chines, in: Proceedings of the Twenty-First International Conference on Ma-
chine Learning, 2004, pp. 105–113 .

[9] T.G. Dietterich , G. Bakiri , Solving multiclass learning problems via error-cor-

recting output codes, Journal of Artificial Intelligence Research 2 (1) (1995)
263–286 .

[10] E.L. Allwein , R.E. Schapire , Y. Singer , Reducing multiclass to binary: a unifying
approach for margin classifiers, Journal of Machine Learning Research 1 (2001)

113141 .
[11] M. Galar , A. Fernández , E. Barrenechea , F. Herrera , DRCW-OVO: distance-based

relative competence weighting combination for one-vs-one strategy in multi–

class problems, Pattern Recognit 48 (1) (2015) 28–42 .
[12] Z.-L. Zhang , X.-G. Luo , S. García , J.-F. Tang , F. Herrera , Exploring the effec-

tiveness of dynamic ensemble selection in the one-versus-one scheme, Knowl
Based Syst 125 (2017) 53–63 .

[13] M. Galar , A. Fernández , E. Barrenechea , H. Bustince , F. Herrera , An overview of
ensemble methods for binary classifiers in multi-class problems: experimental

study on one-vs-one and one-vs-all schemes, Pattern Recognit 44 (8) (2011)

17611776 .
[14] A. Rocha , S.K. Goldenstein , Multiclass from binary: expanding one-versus-all,

one-versus-one and ECOC-based approaches, IEEE Trans Neural Netw Learn
Syst 25 (2) (2014) 289–302 .

[15] Y. Liu , J.-W. Bi , Z.-P. Fan , A method for multi-class sentiment classification
based on an improved One-vs-One (OVO) strategy and the support vector ma-

chine (SVM) algorithm, Inf Sci (Ny) 394 (2017) 38–52 .

[16] P. Songsiri , V. Cherkassky , B. Kijsirikul , Universum selection for boosting the
performance of multiclass support vector machines based on one-versus-one

strategy, Knowl Based Syst 159 (2018) 9–19 .
[17] C.W. Hsu , C.J. Lin , A comparison of methods for multiclass support vector ma-

chines, IEEE Trans. Neural Networks 13 (2) (2002) 415–425 .
[18] A. Farhadi , I. Endres , D. Hoiem , D. Forsyth , Describing objects by their at-

tributes, in: Proceedings of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2009, pp. 1778–1785 .

[19] S. He , L. Schomaker , Open set Chinese character recognition using multi-typed

attributes, arXiv preprint arXiv:1808.08993 (2018) .
20] G. Ou , Y.L. Murphey , Multi-class pattern classification using neural networks,

Pattern Recognit 40 (1) (2007) 418 .
[21] X. Wang , J. Liang , F. Guo , Feature extraction algorithm based on dual-scale de-

composition and local binary descriptors for plant leaf recognition, Digit Signal
Process 34 (2014) 101–107 .

22] D. Guru , Y. Sharath , S. Manjunath , Texture features and KNN in classification

of flower images, IJCA, Special Issue on RTIPPR (1) (2010) 21–29 .
23] A. Fuentes , S. Yoon , S.C. Kim , D.S. Park , A robust deep-learning-based detec-
tor for real-time tomato plant diseases and pests recognition, Sensors 17 (9)

(2017) 2022 .
24] C. Szegedy , V. Vanhoucke , S. Ioffe , J. Shlens , Z. Wojna , Rethinking the inception

architecture for computer vision, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2818–2826 .

25] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,
in: Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2016, pp. 770–778 .

26] R. Rifkin , A. Klautau , In defense of one-vs-all classification, Journal of machine
learning research 5 (Jan) (2004) 101–141 .

[27] I. Goodfellow , Y. Bengio , A. Courville , Deep learning, MIT press, 2016 .
28] J.R. Ubbens , I. Stavness , Deep plant phenomics: a deep learning platform for

complex plant phenotyping tasks, Front Plant Sci 8 (2017) 1190 .
29] A .C. Cruz , A . Luvisi , L. De Bellis , Y. Ampatzidis , X-Fido: an effective application

for detecting olive quick decline syndrome with deep learning and data fusion,

Front Plant Sci 8 (2017) 1741 .
30] J. Ubbens , M. Cieslak , P. Prusinkiewicz , I. Stavness , The use of plant models in

deep learning: an application to leaf counting in rosette plants, Plant Methods
14 (1) (2018) 6 .

[31] S.P. Mohanty , D.P. Hughes , M. Salathé, Using deep learning for image-based
plant disease detection, Front Plant Sci 7 (2016) 1419 .

32] E.C. Too , L. Yujian , S. Njuki , L. Yingchun , A comparative study of fine-tuning

deep learning models for plant disease identification, Comput. Electron. Agric.
161 (2019) 272–279 .

33] C. Zhang , P. Zhou , C. Li , L. Liu , A convolutional neural network for leaves recog-
nition using data augmentation, in: Computer and Information Technology;

Ubiquitous Computing and Communications; Dependable, Autonomic and Se-
cure Computing; Pervasive Intelligence and Computing, 2015 IEEE International

Conference, 2015, pp. 2143–2150 .

34] P. Pawara , E. Okafor , L. Schomaker , M. Wiering , Data augmentation for plant
classification, in: International Conference on Advanced Concepts for Intelli-

gent Vision Systems, Springer, 2017, pp. 615–626 .
35] C. Douarre , R. Schielein , C. Frindel , S. Gerth , D. Rousseau , Transfer learning

from synthetic data applied to soil–root segmentation in x-ray tomography
images, Journal of Imaging 4 (5) (2018) 65 .

36] P. Pawara , E. Okafor , O. Surinta , L. Schomaker , M. Wiering , Comparing local

descriptors and bags of visual words to deep convolutional neural networks
for plant recognition., in: ICPRAM, 2017, pp. 479–486 .

[37] O. Söderkvist , Computer vision classification of leaves from Swedish trees,
Linköping University, 2001 Master’s thesis .

ornntiwa Pawara is a Ph.D. student in Artificial Intelligence, the University of
roningen, the Netherlands. She received a masters degree in Computer Science

rom the University of Wollongong, Australia. Her research interests include com-

uter vision, deep learning, and artificial intelligence.

mmanuel Okafor earned a Ph.D. degree in Artificial Intelligence from the Uni-

ersity of Groningen, the Netherlands,in 2019. Dr. Okafor is a lecturer in the De-
artment of Computer Engineering, Ahmadu Bello University, Nigeria. His main re-

earch interests include computer vision, deep learning, control systems, reinforce-
ent learning, robotics, and optimization.

arc Groefsema is currently finishing his masters degree in Artificial Intelligence at

he University of Groningen. He received his bachelor degree in AI in 2016. Besides
tudying he is an active assistant in the robotics laboratory. His research interests

nclude cognitive robotics, image processing and machine learning.

heng He gained a cum laude Ph.D. degree in artificial intelligence from the Uni-

ersity of Groningen, the Netherlands, in 2017. In 2018, he joined Harvard Medical

chool as a research fellow. He received the Chinese government award for out-
tanding self-financed students abroad (2016) from the Chinese Scholarship Council.

ambert Schomaker is a Professor in Artificial Intelligence at the University of
roningen and was the director of its AI institute ALICE from 2001 to 2018. Prof.

chomaker is a senior member of IEEE and currently a chair of the data science

nd systems complexity center (DSSC) at FSE.

arco Wiering is an assistant professor in the department of artificial intelligence

rom the University of Groningen. Dr. Wiering has (co-)authored more than 160
onference or journal papers. His main research topics are reinforcement learning,

eep learning, neural networks, support vector machines, computer vision and op-

http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30331-9/sbref0037

	One-vs-One classification for deep neural networks
	1 Introduction
	2 A Primer on One-vs-All and One-vs-One classification
	2.1 One-vs-All classification
	2.2 The proposed One-vs-One approach
	2.3 Analysis of the advantages of One-vs-One classification

	3 Datasets and data augmentation techniques
	3.1 Datasets
	3.1.1 Agrilplant dataset
	3.1.2 Tropic dataset
	3.1.3 Swedish dataset
	3.1.4 Monkey-10 dataset

	3.2 Data augmentation techniques

	4 Experimental setup
	4.1 Dataset sampling
	4.2 Deep CNN training schemes

	5 Results and discussion
	5.1 Results of scratch-Inception-V3
	5.2 Results of scratch-ResNet-50
	5.3 Results of fine-tuned inception-V3
	5.4 Results of fine-tuned ResNet-50
	5.5 Results on the monkey datasets
	5.6 Results of training CNNs without data augmentation
	5.7 Discussion

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

