269 research outputs found

    Degree of entanglement as a physically ill-posed problem: The case of entanglement with vacuum

    Full text link
    We analyze an example of a photon in superposition of different modes, and ask what is the degree of their entanglement with vacuum. The problem turns out to be ill-posed since we do not know which representation of the algebra of canonical commutation relations (CCR) to choose for field quantization. Once we make a choice, we can solve the question of entanglement unambiguously. So the difficulty is not with mathematics, but with physics of the problem. In order to make the discussion explicit we analyze from this perspective a popular argument based on a photon leaving a beam splitter and interacting with two two-level atoms. We first solve the problem algebraically in Heisenberg picture, without any assumption about the form of representation of CCR. Then we take the \infty-representation and show in two ways that in two-mode states the modes are maximally entangled with vacuum, but single-mode states are not entangled. Next we repeat the analysis in terms of the representation of CCR taken from Berezin's book and show that two-mode states do not involve the mode-vacuum entanglement. Finally, we switch to a family of reducible representations of CCR recently investigated in the context of field quantization, and show that the entanglement with vacuum is present even for single-mode states. Still, the degree of entanglement is here difficult to estimate, mainly because there are N+2N+2 subsystems, with NN unspecified and large.Comment: This paper is basically a reply to quant-ph/0507189 by S. J. van Enk and to the remarks we got from L. Vaidman after our preliminary quant-ph/0507151. Version accepted in Phys. Rev.

    Quantum constraints, Dirac observables and evolution: group averaging versus Schroedinger picture in LQC

    Full text link
    A general quantum constraint of the form C=T2BIHC= - \partial_T^2 \otimes B - I\otimes H (realized in particular in Loop Quantum Cosmology models) is studied. Group Averaging is applied to define the Hilbert space of solutions and the relational Dirac observables. Two cases are considered. In the first case, the spectrum of the operator (1/2)π2BH(1/2)\pi^2 B - H is assumed to be discrete. The quantum theory defined by the constraint takes the form of a Schroedinger-like quantum mechanics with a generalized Hamiltonian B1H\sqrt{B^{-1} H}. In the second case, the spectrum is absolutely continuous and some peculiar asymptotic properties of the eigenfunctions are assumed. The resulting Hilbert space and the dynamics are characterized by a continuous family of the Schroedinger-like quantum theories. However, the relational observables mix different members of the family. Our assumptions are motivated by new Loop Quantum Cosmology models of quantum FRW spacetime. The two cases considered in the paper correspond to the negative and, respectively, positive cosmological constant. Our results should be also applicable in many other general relativistic contexts.Comment: RevTex4, 32 page

    Revivals in the attractive BEC in a double-well potential and their decoherence

    Full text link
    We study the dynamics of ultracold attractive atoms in a weakly linked two potential wells. We consider an unbalanced initial state and monitor dynamics of the population difference between the two wells. The average imbalance between wells undergoes damped oscillations, like in a classical counterpart, but then it revives almost to the initial value. We explain in details the whole behavior using three different models of the system. Furthermore we investigate the sensitivity of the revivals on the decoherence caused by one- and three-body losses. We include the dissipative processes using appropriate master equations and solve them using the stochastic wave approximation method

    Entangled-state cryptographic protocol that remains secure even if nonlocal hidden variables exist and can be measured with arbitrary precision

    Full text link
    Standard quantum cryptographic protocols are not secure if one assumes that nonlocal hidden variables exist and can be measured with arbitrary precision. The security can be restored if one of the communicating parties randomly switches between two standard protocols.Comment: Shortened version, accepted in Phys. Rev.

    PR-box correlations have no classical limit

    Full text link
    One of Yakir Aharonov's endlessly captivating physics ideas is the conjecture that two axioms, namely relativistic causality ("no superluminal signalling") and nonlocality, so nearly contradict each other that a unique theory - quantum mechanics - reconciles them. But superquantum (or "PR-box") correlations imply that quantum mechanics is not the most nonlocal theory (in the sense of nonlocal correlations) consistent with relativistic causality. Let us consider supplementing these two axioms with a minimal third axiom: there exists a classical limit in which macroscopic observables commute. That is, just as quantum mechanics has a classical limit, so must any generalization of quantum mechanics. In this classical limit, PR-box correlations violate relativistic causality. Generalized to all stronger-than-quantum bipartite correlations, this result is a derivation of Tsirelson's bound without assuming quantum mechanics.Comment: for a video of this talk at the Aharonov-80 Conference in 2012 at Chapman University, see quantum.chapman.edu/talk-10, published in Quantum Theory: A Two-Time Success Story (Yakir Aharonov Festschrift), eds. D. C. Struppa and J. M. Tollaksen (New York: Springer), 2013, pp. 205-21

    The effects of the next-nearest-neighbour density-density interaction in the atomic limit of the extended Hubbard model

    Full text link
    We have studied the extended Hubbard model in the atomic limit. The Hamiltonian analyzed consists of the effective on-site interaction U and the intersite density-density interactions Wij (both: nearest-neighbour and next-nearest-neighbour). The model can be considered as a simple effective model of charge ordered insulators. The phase diagrams and thermodynamic properties of this system have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigation of the general case taking into account for the first time the effects of longer-ranged density-density interaction (repulsive and attractive) as well as possible phase separations shows that, depending on the values of the interaction parameters and the electron concentration, the system can exhibit not only several homogeneous charge ordered (CO) phases, but also various phase separated states (CO-CO and CO-nonordered). One finds that the model considered exhibits very interesting multicritical behaviours and features, including among others bicritical, tricritical, critical-end and isolated critical points.Comment: 12 pages, 7 figures; final version, pdf-ReVTeX; corrected typos in reference; submitted to Journal of Physics: Condensed Matte

    On the connection between mutually unbiased bases and orthogonal Latin squares

    Full text link
    We offer a piece of evidence that the problems of finding the number of mutually unbiased bases (MUB) and mutually orthogonal Latin squares (MOLS) might not be equivalent. We study a particular procedure which has been shown to relate the two problems and generates complete sets of MUBs in power-of-prime dimensions and three MUBs in dimension six. For these cases, every square from an augmented set of MOLS has a corresponding MUB. We show that this no longer holds for certain composite dimensions.Comment: 6 pages, submitted to Proceedings of CEWQO 200

    A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field

    Get PDF
    A Higgsless model for strong, electro-weak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)xSU(2)xU(1)xC where C is the local conformal symmetry group. The natural minimal conformally invariant form of total lagrangian is postulated. It contains all Standard Model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions we can eliminate all four real components of the Higgs doublet in this model. However the masses of vector mesons, leptons and quarks are automatically generated and are given by the same formulas as in the conventional Standard Model. The gravitational sector is analyzed and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions. No figures.Comment: 25 pages, preprin
    corecore