23 research outputs found

    Impact of biogenic SOA loading on the molecular composition of wintertime PM2.5 in urban Tianjin: an insight from Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Biomass burning is one of the key sources of urban aerosols in the North China Plain, especially in winter when the impact of secondary organic aerosols (SOA) formed from biogenic volatile organic compounds (BVOCs) is generally considered to be minor. However, little is known about the influence of biogenic SOA loading on the molecular composition of wintertime organic aerosols. Here, we investigated the water-soluble organic compounds in fine particles (PM2.5) from urban Tianjin by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Our results show that most of the CHO and CHON compounds were derived from biomass burning; they contain O-poor and highly unsaturated compounds with aromatic rings, which are sensitive to photochemical reactions, and some of which probably contribute to light-absorbing chromophores. Under moderate to high SOA loading conditions, the nocturnal chemistry is more efficient than photooxidation to generate secondary CHO and CHON compounds with high oxygen content. Under low SOA-loading, secondary CHO and CHON compounds with low oxygen content are mainly formed by photochemistry. Secondary CHO compounds are mainly derived from oxidation of monoterpenes. But nocturnal chemistry may be more productive to sesquiterpene-derived CHON compounds. In contrast, the number- and intensity-weight of S-containing groups (CHOS and CHONS) increased significantly with the increase of biogenic SOA-loading, which agrees with the fact that a majority of the S-containing groups are identified as organosulfates and nitrooxy-organosulfates that are derived from the oxidation of BVOCs. Terpenes may be potential major contributors to the chemical diversity of organosulfates and nitrooxy-organosulfates under photo-oxidation. While the nocturnal chemistry is more beneficial to the formation of organosulfates and nitrooxy-organosulfates under low SOA-loading. The SOA-loading is an important factor associating with the oxidation degree, nitrate group content and chemodiversity of nitrooxy-organosulfates. Furthermore, our study suggests that the hydrolysis of nitrooxy-organosulfates is a possible pathway for the formation of organosulfates.</p

    Enrichment of C-13 in diacids and related compounds during photochemical processing of aqueous aerosols: New proxy for organic aerosols aging

    Get PDF
    To investigate the applicability of compound specific stable carbon isotope ratios (delta C-13) of organics in assessment of their photochemical aging in the atmosphere, batch UV irradiation experiments were conducted on two ambient (anthropogenic and biogenic) aerosol samples in aqueous phase for 0.5-120 h. The irradiated samples were analyzed for delta C-13 of diacids, glyoxylic acid (omega C-2) and glyoxal. delta C-13 of diacids and related compounds became larger with irradiation time (i.e., aging), except for few cases. In general, delta C-13 of C-2-C-4 diacids showed an increasing trend with decreasing chain length. Based on delta C-13 of diacids and related compounds and their relations to their concentrations, we found that C-2 and C-3 are enriched with C-13 during the photochemical decomposition and production from their higher homologues and oxoacids. Photochemical breakdown of higher (>= C-3) to lower diacids is also important in the enrichment of C-13 in C3-C9 diacids whereas their production from primary precursors causes depletion of C-13. In case of omega C-2 and glyoxal, their photochemical production and further oxidation to highly oxygenated compounds both cause the enrichment of C-13. This study reveals that delta C-13 of diacids and related compounds can be used as a proxy to trace the aging of organic aerosols during long-range atmospheric transport

    Evidence for 13-carbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase

    Get PDF
    To investigate the effect of photochemical aging on the stable carbon isotopic ratio (δ13C) of oxalic acid (OxA), a dominant organic species in atmospheric aerosols, we conducted a laboratory photolysis of OxA under H2O2-Fe3+(Fe2+)-UV system in aqueous phase and measured δ13C of remaining OxA. Our results showed that a significant photolysis of OxA occurred with OH radical but the isotopic fractionation of OxA was insignificant. In contrast, in the presence of Fe3+ (Fe2+), we found a significant enrichment of 13C in remaining OxA. We also found that kinetic isotope effect (KIE) of OxA largely depends on photochemical age (irradiation time) and concentration ratios of OxA to iron; 3.20 ± 0.49‰ (2.18 ± 1.18 ‰) and 21.62 ± 5.41‰ in 90 min and 180 min irradiation, in which OxA and Fe3+ (Fe2+) ratios were 50:1 and 200:1, respectively. The enrichment of 13C in remaining OxA was more significant during the photolysis catalyzed by Fe3+ (7‰) than by Fe2+ (3‰) in 90 min irradiation when OxA and iron ratios are the same (50:1). This study provides a laboratory evidence for the isotopic enrichment of 13C in OxA with photochemical aging. This approach is useful for better interpretation of atmospheric isotopic measurements in terms of the extent of atmospheric processing of aerosols

    Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols

    Get PDF
    Tropical aerosol (PM10) samples (n = 49) collected from southeast coast of India were studied for water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal), together with analyses of total carbon (TC) and water-soluble organic carbon (WSOC). Their distributions were characterized by a predominance of oxalic acid followed by terephthalic (t-Ph), malonic, and succinic acids. Total concentrations of diacids (227-1030 ng m^[-3]), ketoacids (16-105 ng m^[-3]), and dicarbonyls (4-23 ng m^[-3]) are comparative to those from other Asian megacities such as Tokyo and Hong Kong. t-Ph acid was found as the second most abundant diacid in the Chennai aerosols. This feature has not been reported previously in atmospheric aerosols. t-Ph acid is most likely derived from the field burning of plastics. Water-soluble diacids were found to contribute 0.4%-3% of TC and 4%-11% of WSOC. Based on molecular distributions and backward air mass trajectories, we found that diacids and related compounds in coastal South Indian aerosols are influenced by South Asian and Indian Ocean monsoons. Organic aerosols are also suggested to be significantly transported long distances from North India and the Middle East in early winter and from Southeast Asia in late winter, but some originate from photochemical reactions over the Bay of Bengal. In contrast, the Arabian Sea, Indian Ocean, and South Indian continent are suggested as major source regions in summer. We also found daytime maxima of most diacids, except for C9 and t-Ph acids, which showed nighttime maxima in summer. Emissions from marine and terrestrial plants, combined with land/sea breezes and in situ photochemical oxidation, are suggested especially in summer as an important factor that controls the composition of water-soluble organic aerosols over the southeast coast of India. Regional emissions from anthropogenic sources are also important in megacity Chennai, but their influence is weakened due to the dispersion caused by dynamic land/sea breeze on the coast

    Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai : Implication for the origins of aerosol nitrogen in South and Southeast Asia

    Get PDF
    To better understand the origins of aerosol nitrogen, we measured concentrations of total nitrogen (TN) and its isotope ratios (δ15N) in tropical Indian aerosols (PM10) collected from Chennai (13.04° N; 80.17° E) on day- and night-time basis in winter and summer 2007. We found high δ15N values (+15.7 to +31.2‰) of aerosol N (0.3-3.8 μg m-3), in which NH4+ is the major species (78%) with lesser contribution from NO3- (6%). Based on the comparison of δ15N in Chennai aerosols with those reported for atmospheric aerosols from mid-latitudes and for the particles emitted from point sources (including a laboratory study), as well as the δ15N ratios of cow-dung samples (this study), we found that the atmospheric aerosol N in Chennai has two major sources; animal excreta and bio-fuel/biomass burning from South and Southeast Asia. We demonstrate that a gas-to-particle conversion of NH3 to NH4HSO4 and (NH4)2SO4 and the subsequent exchange reaction between NH3 and NH4+ are responsible for the isotopic enrichment of 15N in aerosol nitrogen

    Characteristics, seasonality and sources of inorganic ions and trace metals in North-east Asian aerosols

    Get PDF
    Environmental context Atmospheric aerosols affect the Earth's climate system and can cause adverse effects on human health depending on their loading and chemical composition. This study presents the chemical characteristics and seasonality of inorganic ions and trace metals in atmospheric aerosols from Sapporo, northern Japan, and explores their possible sources. The work is relevant for our understanding of atmospheric composition and climate change. Abstract To better understand the characteristics, seasonality and sources of inorganic aerosols in North-east Asia, we studied total suspended particulate samples collected in Sapporo, northern Japan for inorganic ions and trace metals over a 1-year period. SO42- was found as the most abundant ionic species, which accounted for on average 43 +/- 15% of the measured total ionic mass followed by Cl-approximate to NO3-approximate to Na+. Among the metals determined, Ca was found as the most abundant (45 +/- 5.2% of the measured total metals) followed by Fe. Temporal variations of methanesulfonate (MS-) and SO42- showed a clear seasonal pattern with a maximum in summer followed by spring. Cl-, NO3-, NH4+ and K+ showed increasing trends from mid autumn to winter. Na+, Ca2+ and Mg2+ and crustal metals (Al, Ca, Fe, Ti and Mn) peaked in early spring. Na+ and Mg2+ and Ni, Cu and As were abundant in autumn whereas Zn was in spring. However, Cd and Pb did not show any seasonality. Based on comparisons of such seasonal trends with those of organic tracers as well as the air mass trajectories, we infer that the seasonality in inorganic aerosols in the North-east Asian atmosphere is mainly controlled by their season-specific source(s): soil dust in early spring, biogenic emissions in spring-summer, microbial activities in autumn and forest fires and biomass burning in autumn-winter. However, contributions from anthropogenic sources are significant in all seasons. This study also suggests that fungal spores partly contribute to some trace metals (i.e. Ni, Cu and As) whereas pollen contributes to Zn in aerosols

    Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols : Implications for sources and photochemical processing of organic aerosols

    Get PDF
    The tropical Indian aerosols (PM10) collected on day- and nighttime bases in winter and summer, 2007 from Chennai (13.04°N; 80.17°E) were studied for stable carbon isotopic compositions (δ13C) of total carbon (TC), individual dicarboxylic acids (C2-C9) and glyoxylic acid (ωC2). δ13C values of TC ranged from -23.9 ‰ to -25.9‰ (-25.0 ± 0.6‰; n = 49). Oxalic (C2) (-17.1 ± 2.5‰), malonic (C3) (-20.8 ± 1.8‰), succinic (C4) (-22.5 ± 1.5‰) and adipic (C6) (-20.6 ± 4.1‰) acids and ωC2 acid (-22.4 ± 5.5‰) were found to be more enriched with 13C compared to TC. In contrast, suberic (C8) (-29.4 ± 1.8‰), phthalic (Ph) (-30.1 ± 3.5‰) and azelaic (C9) (-28.4 ± 5.8‰) acids showed smaller δ13C values than TC. Based on comparisons of δ13C values of TC in Chennai aerosols to those (-24.7 ± 2.2‰) found in unburned cow-dung samples collected from Chennai and isotopic signatures of the particles emitted from point sources, we found that biofuel/biomass burning are the major sources of carbonaceous aerosols in South and Southeast Asia. The decrease in δ13C values of C9 diacid by about 5‰ from winter to summer suggests that tropical plant emissions also significantly contribute to organic aerosol in this region. Significant increase in δ13C values from C4 to C2 diacids in Chennai aerosols could be attributed for their photochemical processing in the tropical atmosphere during long-range transport from source regions
    corecore