56 research outputs found

    Multiple Functions for ORF75c in Murid Herpesvirus-4 Infection

    Get PDF
    All gamma-herpesviruses encode at least one homolog of the cellular enzyme formyl-glycineamide-phosphoribosyl-amidotransferase. Murid herpesvirus-4 (MuHV-4) encodes 3 (ORFs 75a, 75b and 75c), suggesting that at least some copies have acquired new functions. Here we show that the corresponding proteins are all present in virions and localize to infected cell nuclei. Despite these common features, ORFs 75a and 75b did not substitute functionally for a lack of ORF75c, as ORF75c virus knockouts were severely impaired for lytic replication in vitro and for host colonization in vivo. They showed 2 defects: incoming capsids failed to migrate to the nuclear margin following membrane fusion, and genomes that did reach the nucleus failed to initiate normal gene expression. The latter defect was associated with a failure of in-coming virions to disassemble PML bodies. The capsid transport deficit seemed to be functionally more important, since ORF75c− MuHV-4 infected both PML+ and PML− cells poorly. The original host enzyme has therefore evolved into a set of distinct and multi-functional viral tegument proteins. One important function is moving incoming capsids to the nuclear margin for viral genome delivery

    Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface

    Get PDF
    Lipopolysaccharide (LPS) O-antigen (O-Ag) is known to limit antibody binding to surface antigens, although the relationship between antibody, O-Ag and other outer-membrane antigens is poorly understood. Here we report, immunization with the trimeric porin OmpD from Salmonella Typhimurium (STmOmpD) protects against infection. Atomistic molecular dynamics simulations indicate this is because OmpD trimers generate footprints within the O-Ag layer sufficiently sized for a single IgG Fab to access. While STmOmpD differs from its orthologue in S. Enteritidis (SEn) by a single amino-acid residue, immunization with STmOmpD confers minimal protection to SEn. This is due to the OmpD-O-Ag interplay restricting IgG binding, with the pairing of OmpD with its native O-Ag being essential for optimal protection after immunization. Thus, both the chemical and physical structure of O-Ag are key for the presentation of specific epitopes within proteinaceous surface-antigens. This enhances combinatorial antigenic diversity in Gram-negative bacteria, while reducing associated fitness costs

    An Inducible and Reversible Mouse Genetic Rescue System

    Get PDF
    Inducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system, which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline. This method combines two genetically modified mouse lines: a) a KO line with a tetracycline-dependent transactivator replacing the endogenous target gene, and b) a line with a tetracycline-inducible cDNA of the target gene inserted into a tightly regulated (TIGRE) genomic locus, which provides for low basal expression and high inducibility. Such a locus occurs infrequently in the genome and we have developed a method to easily introduce genes into the TIGRE site of mouse embryonic stem (ES) cells by recombinase-mediated insertion. Both KO and TIGRE lines have been engineered for high-throughput, large-scale and cost-effective production of iKO mice. As a proof of concept, we have created iKO mice in the apolipoprotein E (ApoE) gene, which allows for sensitive and quantitative phenotypic analyses. The results demonstrated reversible switching of ApoE transcription, plasma cholesterol levels, and atherosclerosis progression and regression. The iKO system shows stringent regulation and is a versatile genetic system that can easily incorporate other techniques and adapt to a wide range of applications

    Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds

    Get PDF
    Inference concerning the impact of habitat fragmentation on dispersal and gene flow is a key theme in landscape genetics. Recently, the ability of established approaches to identify reliably the differential effects of landscape structure (e.g. land-cover composition, remnant vegetation configuration and extent) on the mobility of organisms has been questioned. More explicit methods of predicting and testing for such effects must move beyond post hoc explanations for single landscapes and species. Here, we document a process for making a priori predictions, using existing spatial and ecological data and expert opinion, of the effects of landscape structure on genetic structure of multiple species across replicated landscape blocks. We compare the results of two common methods for estimating the influence of landscape structure on effective distance: least-cost path analysis and isolation-by-resistance. We present a series of alternative models of genetic connectivity in the study area, represented by different landscape resistance surfaces for calculating effective distance, and identify appropriate null models. The process is applied to ten species of sympatric woodland-dependant birds. For each species, we rank a priori the expectation of fit of genetic response to the models according to the expected response of birds to loss of structural connectivity and landscape-scale tree-cover. These rankings (our hypotheses) are presented for testing with empirical genetic data in a subsequent contribution. We propose that this replicated landscape, multi-species approach offers a robust method for identifying the likely effects of landscape fragmentation on dispersal

    Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU)

    Get PDF

    Mitochondrial respiratory states and rate

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Lack of change in glucose metabolism in eszopiclone-treated primary insomnia patients

    No full text
    Orfeu M Buxton,1-4 Milena K Pavlova,1,5 Shawn P O’Connor,1 Wei Wang,1,2 John W Winkelman1,6 1Division of Sleep Medicine, Harvard Medical School, 2Department of Medicine, Brigham and Women’s Hospital, 3Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA, 4Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, 5Department of Neurology, Brigham and Women’s Hospital, 6Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA Study objectives: Primary insomnia (PI) may increase diabetes risk. We tested the hypothesis that the effects of PI on glucose metabolism could be improved by 2 months of pharmacological treatment.Methods: Adult men and women meeting clinical criteria for PI were studied (n=20, body mass index 25.1±2.7 kg/m2, age 39.7±7.9) in a randomized, double-blind, placebo-controlled clinical trial. The study consisted of two 1-day inpatient admissions to a General Clinical Research Center separated by 2 months of at-home treatment with 3 mg eszopiclone or placebo. During inpatient admissions, each subject underwent two intravenous glucose tolerance tests (IVGTTs) pre- and post-treatment. Diet was controlled for micro- and macro-nutrient content and calories on the day prior to pre- and post-treatment IVGTTs. Subjects were randomized following completion of the initial IVGTT to take either placebo or eszopiclone 30 min prior to bedtime at home for 2 months.Results: Two-month eszopiclone treatment did not change insulin sensitivity, glucose tolerance, or any of the sleep measures significantly, compared with placebo. Changes in glycated hemoglobin (HbA1c, clinical measure of glycemic control) were correlated with changes in diary-reported total sleep time in the eszopiclone group (r=0.66, p=0.0360), and in the combined groups’ data (r=0.55, p=0.0125). Changes in polysomnography-measured wake after sleep onset, a hallmark of PI, were positively related to changes in IVGTT-derived glucose effectiveness, or non-insulin-mediated glucose uptake.Conclusion: Treatment with 3 mg eszopiclone for 2 months, compared with placebo, did not significantly influence either sleep or measures of diabetes risk in this preliminary study. Keywords: primary insomnia, sleep duration, metabolism, IVGTT, insulin sensitivity, diabetes, eszopiclone, wake after sleep onse
    corecore