59 research outputs found

    Spectroscopic characterization of the oxo-transfer reaction from a bis(µ-oxo)dicopper(III) complex to triphenylphosphine

    Get PDF
    The oxygen-atom transfer reaction from the bis(µ-oxo)dicopper(III) complex [CuIII2(µ-O)2(L)2]2+1, where L =N,N,N,N -tetraethylethylenediamine, to PPh3 has been studied by UV-vis, EPR, 1H NMR and Cu K-edge X-ray absorption spectroscopy in parallel at low temperatures (193 K) and above. Under aerobic conditions (excess dioxygen), 1 reacted with PPh3, giving OPPh3 and a diamagnetic species that has been assigned to an oxo-bridged dicopper(II) complex on the basis of EPR and Cu K-edge X-ray absorption spectroscopic data. Isotope-labeling experiments (18O2) established that the oxygen atom incorporated into the triphenylphosphine oxide came from both complex 1 and exogenous dioxygen. Detailed kinetic studies revealed that the process is a third-order reaction; the rate law is first order in both complex 1 and triphenylphosphine, as well as in dioxygen. At temperatures above 233 K, reaction of 1 with PPh3 was accompanied by ligand degradation, leading to oxidative N-dealkylation of one of the ethyl groups. By contrast, when the reaction was performed in the absence of excess dioxygen, negligible substrate (PPh3) oxidation was observed. Instead, highly symmetrical copper complexes with a characteristic isotropic EPR signal at g= 2.11 were formed. These results are discussed in terms of parallel reaction channels that are activated under various conditions of temperature and dioxygen

    2-Hydroxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene]propanohydrazide

    Get PDF
    The title compound, C10H12N4O2, features an intra­molecular N—H⋯N hydrogen bond formed between the imine NH and oxime N atoms. The oxime group and the amide C=O bond are anti to each other. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds into supra­molecular zigzag chains along the c axis

    (2E)-2-Hydroxy­imino-N′-[(E)-2-pyridyl­methyl­ene]propanohydrazide

    Get PDF
    In the title compound, C9H10N4O2, the pyridine ring is twisted by 16.5 (1)° from the mean plane defined by the remaining non-H atoms. An intra­molecular N—H⋯N inter­action is present. In the crystal, inter­molecular O—H⋯N and N—H⋯O hydrogen bonds link mol­ecules into layers parallel to the bc plane. The crystal packing exhibits π–π inter­actions indicated by the short distance of 3.649 (1) Å between the centroids of the pyridine rings of neighbouring mol­ecules

    μ-Oxalato-bis­[(2,2′-bipyridyl)­copper(II)] bis(perchlorate) dimethyl­formamide disolvate monohydrate

    Get PDF
    The title compound, [Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O, contains doubly charged centrosymmetric dinuclear oxalato-bridged copper(II) complex cations, perchlorate anions, and DMF and water solvate mol­ecules. In the complex cation, the oxalate ligand is coordinated in a bis-bidentate bridging mode to the Cu atoms. Each Cu atom has a distorted tetra­gonal-bipyramidal environment, being coordinated by two N atoms of the two chelating bipy ligands and two O atoms of the doubly deprotonated oxalate anion. Pairs of perchlorate anions and water mol­ecules are linked into recta­ngles by O—H⋯O bonds in which the perchlorate O atoms act as acceptors and the water mol­ecules as donors. Methyl groups of the DMF solvent molecule are disordered over two sites with occupancies of 0.453 (7):0.547 (7), and the water molecule is half-occupied

    μ-Peroxido-bis­[acetonitrile­bis­(ethyl­enediamine)­cobalt(III)] tetrakis(per­chlorate)

    Get PDF
    The title compound, [Co2(O2)(CH3CN)2(C2H8N2)4](ClO4)4, consists of centrosymmetric binuclear cations and perchlorate anions. Two CoIII atoms, which have a slightly distorted octa­hedral coordination, are connected through a peroxido bridge; the O—O distance is 1.476 (3) Å. Both acetonitrile ligands are situated in a trans position with respect to the O—O bridge. In the crystal, the complex cations are connected by N—H⋯O hydrogen bonds between ethyl­endiamine NH groups and O atoms from the perchlorate anions and peroxide O atoms

    2-Hydroxy­amino-2-oxoacetohydrazide

    Get PDF
    In the title compound, C2H5N3O3, the hydroxamic group adopts an anti orientation with respect to the hydrazide group. In the crystal, mol­ecules are connected by N—H⋯O and O—H⋯N hydrogen bonds into zigzag chains along the c axis

    Synthesis, structure and dioxygen reactivity of a bis(µ-iodo)dicopper(I) complex supported by the [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine ligand

    Get PDF
    The air-sensitive bis(µ-iodo)dicopper(I) complex 1 supported by [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine (L) has been prepared by treating copper(I) iodide with L in anhydrous THF. Compound 1 crystallizes as a dimer in space group C2/c. Each copper(I) center has distorted tetrahedral N2I2 coordination geometry with Cu–N(pyridyl) distances 2.061(3) and 2.063(3) Å, Cu–I distances 2.6162(5) and 2.7817(5) and a CuCu distance of 2.9086(8) Å. Complex 1 is rapidly oxidized by dioxygen in CH2Cl2 with a 1 : 1 stoichiometry giving the bis(µ-iodo)peroxodicopper(II) complex [Cu(L)(µ-I)]2O2 (2). The reaction of 1 with dioxygen has been characterized by UV-vis, mass spectrometry, EPR and Cu K-edge X-ray absorption spectroscopy at low temperature (193 K) and above. The mass spectrometry and low temperature EPR measurements suggested an equilibrium between the bis(µ-iodo)peroxodicopper(II) complex 2 and its dimer, namely, the tetranuclear (peroxodicopper(II))2 complex [Cu(L)(µ-I)]4O4 (2). Complex 2 undergoes an effective oxo-transfer reaction converting PPh3 into OPPh3 under anaerobic conditions. At sufficiently high concentration of PPh3, the oxygen atom transfer from 2 to PPh3 was followed by the formation of [Cu(PPh3)3I]. The dioxygen reactivity of 1 was compared with that known for other halo(amine)copper(I) dimers

    Who are you, Griselda? A replacement name for a new genus of the Asiatic short-tailed shrews (Mammalia, Eulipotyphla, Soricidae): molecular and morphological analyses with the discussion of tribal affinities

    Get PDF
    The first genetic study of the holotype of the Gansu short-tailed shrew, Blarinella griselda Thomas, 1912, is presented. The mitochondrial analysis demonstrated that the type specimen of B. griselda is close to several recently collected specimens from southern Gansu, northern Sichuan and Shaanxi, which are highly distinct from the two species of Asiatic short-tailed shrews of southern Sichuan, Yunnan, and Vietnam, >B. quadraticauda and B. wardi. Our analysis of four nuclear genes supported the placement of B. griselda as sister to B. quadraticauda / B. wardi, with the level of divergence between these two clades corresponding to that among genera of Soricinae. A new generic name, Parablarinella, is proposed for the Gansu short-tailed shrew. Karyotypes of Parablarinella griselda(2n = 49, NFa = 50) and B. quadraticauda (2n = 49, NFa = 62) from southern Gansu are described. The tribal affinities of Blarinellini and Blarinini are discussed.Copyright Anna A. Bannikova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Econometric Methods for Evaluating of Open National Innovative Systems

    Get PDF
    The urgency of the problem stated in the paper is reasoned by the fact that the rapid acceleration of the changes of the existing economic and institutional conditions raises the need to develop new theoretical-methodological and practical approaches to the problems' solving in order to achieve sustainable growth of innovation growth. The purpose of the paper is developing of a methodology to assess the open national innovation systems through the use of econometric models. The leading approach to the study of this problem is the method of economic-mathematical modeling, allowing evaluating of the level of national innovation systems' openness using quantitative indicators and building of innovative development's forecasts. The article reveals the essence of open innovations, open national innovation systems, on the basis of production functions the forecast of the share of service sector's value added in GDP is built using additive and multiplicative models. Paper Submissions are of theoretical and practical significance for open innovation management models' development, as well as for the development of the state innovation policy's strategy. Keywords: National Innovation System, Evaluation Methods, Econometric Modeling, Production Function, Additive Model, Multiplicative Model. JEL Classifications: B23, F41, O3

    Materials of scientific and practical conference «Dietoogy In Practice Of Endocrinologist» at the VIII (XXV) Russian Diabetology Congress With International Participation «Diabetes Mellitus – XXIth Century Pandemia»

    Get PDF
    The scientific-practical conference Dietoogy In Practice Of Endocrinologist was held during the VIII Russian diabetology congress with international participation “Diabetes Mellitus – XXIth Century Pandemia”. It was chaired by Academician of RAS M.V. Shestakova (Moscow), Professors L.A. Ruyatkina (Novosibirsk ) and L.A. Suplotova (Tyumen). The expediency of this event was dictated by the necessity to create a unified national regulated guidelines for the diet therapy of obesity and associated diseases for the medical community and patients. The program of the meeting included a discussion about the formation of a healthy diet and its effect on the body, starting from the pregnant women, fetal development, the breastfeeding period, in the period of perimenopause and postmenopause, in the presence of concomitant pathology of heart and kidneys
    corecore