566 research outputs found

    Detecting the Elusive Blazar Counter-Jets

    Full text link
    Detection of blazar pc scale counter-jets is difficult, but it can provide invaluable insight into the relativistic effects, radiative processes and the complex mechanisms of jet production, collimation and accelation in blazars. We build on recent populations models (optimized using the MOJAVE apparent velocity and redshift distributions) in order to derive the distribution of jet-to-counter-jet ratios and the flux densities of the counter-jet at different frequencies, in an effort to set minimum sensitivity limits required for existing and future telescope arrays in order to detect these elusive counter-jets. We find that: for the BL Lacs 5%5\% of their counter-jets have a flux-density higher than 100mJy, 15%15\% are higher than 10 mJy, and 32%32\% have higher flux-density than 1 mJy, whereas for the FSRQs 8%8\% have a flux-density higher than 10mJy, 17%17\% are higher than 1 mJy, and 32%32\% are higher than 0.1 mJy (at 15 GHz). Future telescopes like the SKA and newly operating like e-MERLIN and JVLA may detect up to 99%99\% of the BL Lac and 77%77\% of the FSRQ counter-jets. Sources with both low apparent velocity and a low Doppler factor make prime candidates for counter-jet detection. Combining our findings with literature values we have identified five such counter-jet detection candidates. Finally, we discuss possible effects beyond relativistic deboosting that may complicate the detection of counter-jets and that need to be accounted for in the interpretation of detections.Comment: 13 pages, 15 figures, accepted for publication in MNRA

    A novel approach to source routing for multi-hop ad hoc networks

    Full text link

    Hydrology and pollution assessment in a coastal estuarine system. The case of the Strymonikos Gulf (North Aegean Sea)

    Get PDF
    Three hydrographic cruises were undertaken to study the hydrology and to estimate the ecological status of the coastal ecosystem of the Strymonikos Gulf (North Aegean Sea) impacted by the riverine waters of the Strymon River. Surface sediments were also collected in order to determine the levels of organic contaminants in the gulf. Three main water masses were identified in the Strymonikos Gulf throughout the year: a) the surface river plume water, b) the surface and subsurface Black Sea Water and c) the near bottom (>50 m) water of Levantine origin. High nutrient concentrations were recorded close to the mouth of the river, indicating a rather eutrophic environment, which was restricted near the river discharge. The salinity-nutrient correlations of the surface waters of the study area were linear, indicating that the riverine waters are the major source of nutrient in the gulf. DIN:P ratios varied seasonally from relatively higher values during winter and early spring to lower values in late spring-early summer. This led to a shift from likelihood P-limitation during winter and early spring to N-limitation in late spring – early summer. Total hydrocarbon concentrations measured in the sediments ranged from 19.2 to 95.9 μ g/g, whereas total polycyclic aromatic hydrocarbon (PAH) values varied between 107.2 and 1019 ng/g. The application of different diagnostic criteria suggests a natural terrestrial origin for aliphatic hydrocarbons and pyrolytic origin for the PAHs. DDTs displayed the highest concentrations of all the organochlorines determined, whereas polychlorinated biphenyl (PCBs) concentrations were very low. Riverine input seems to be the major source for all the compounds identified

    Scale invariant jets: from blazars to microquasars

    Get PDF
    Black holes, anywhere in the stellar-mass to supermassive range, are often associated with relativistic jets. Models suggest that jet production may be a universal process common in all black hole systems regardless of their mass. Although in many cases observations support such hypotheses for microquasars and Seyfert galaxies, little is known on whether boosted blazar jets also comply with such universal scaling laws. We use uniquely rich multiwavelength radio light curves from the F-GAMMA program and the most accurate Doppler factors available to date to probe blazar jets in their emission rest frame with unprecedented accuracy. We identify for the first time a strong correlation between the blazar intrinsic broad-band radio luminosity and black hole mass, which extends over ∼\sim 9 orders of magnitude down to microquasars scales. Our results reveal the presence of a universal scaling law that bridges the observing and emission rest frames in beamed sources and allows us to effectively constrain jet models. They consequently provide an independent method for estimating the Doppler factor, and for predicting expected radio luminosities of boosted jets operating in systems of intermediate or tens-of-solar mass black holes, immediately applicable to cases as those recently observed by LIGO.Comment: 13 pages, 4 figures, accepted for publication in AP

    Search for AGN counterparts of unidentified Fermi-LAT sources with optical polarimetry: Demonstration of the technique

    Get PDF
    The third Fermi-LAT catalog (3FGL) presented the data of the first four years of observations from the Fermi Gamma-ray Space Telescope mission. There are 3034 sources, 1010 of which still remain unidentified. Identifying and classifying gamma-ray emitters is of high significance with regard to studying high-energy astrophysics. We demonstrate that optical polarimetry can be an advantageous and practical tool in the hunt for counterparts of the unidentified gamma-ray sources (UGSs). Using data from the RoboPol project, we validated that a significant fraction of active galactic nuclei (AGN) associated with 3FGL sources can be identified due to their high optical polarization exceeding that of the field stars. We performed an optical polarimetric survey within 3σ3\sigma uncertainties of four unidentified 3FGL sources. We discovered a previously unknown extragalactic object within the positional uncertainty of 3FGL J0221.2+2518. We obtained its spectrum and measured a redshift of z=0.0609±0.0004z=0.0609\pm0.0004. Using these measurements and archival data we demonstrate that this source is a candidate counterpart for 3FGL J0221.2+2518 and most probably is a composite object: a star-forming galaxy accompanied by AGN. We conclude that polarimetry can be a powerful asset in the search for AGN candidate counterparts for unidentified Fermi sources. Future extensive polarimetric surveys at high galactic latitudes (e.g., PASIPHAE) will allow the association of a significant fraction of currently unidentified gamma-ray sources.Comment: accepted to A&

    On the phenomenological classification of continuum radio spectra variability patterns of Fermi blazars

    Full text link
    The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of {\em Fermi} blazars. The current study is concerned with the broad-band radio spectra composed of measurement at ten frequencies between 2.64 and 142 GHz. It is shown that any of the 78 sources studied can be classified in terms of their variability characteristics in merely 5 types of variability. The first four types are dominated by spectral evolution and can be reproduced by a simple two-component system made of the quiescent spectrum of a large scale jet populated with a flaring event evolving according to Marscher & Gear (1985). The last type is characterized by an achromatic change of the broad-band spectrum which must be attributed to a completely different mechanism. Here are presented, the classification, the assumed physical system and the results of simulations that have been conducted.Comment: 2011 Fermi Symposium proceedings - eConf C11050

    Structure Differentiation of Hydrophilic Brass Nanoparticles Using a Polyol Toolbox

    Get PDF
    Nano-brasses are emerging as a new class of composition-dependent applicable materials. It remains a challenge to synthesize hydrophilic brass nanoparticles (NPs) and further exploit them for promising bio-applications. Based on red/ox potential of polyol and nitrate salts precursors, a series of hydrophilic brass formulations of different nanoarchitectures was prepared and characterized. Self-assembly synthesis was performed in the presence of triethylene glycol (TrEG) and nitrate precursors Cu(NO3)2·3H2O and Zn(NO3)2·6H2O in an autoclave system, at different temperatures, conventional or microwave-assisted heating, while a range of precursor ratios was investigated. NPs were thoroughly characterized via X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmition electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and ζ-potential to determine the crystal structure, composition, morphology, size, state of polyol coating, and aqueous colloidal stability. Distinct bimetallic α-brasses and γ-brasses, α-Cu40Zn25/γ-Cu11Zn24, α-Cu63Zn37, α-Cu47Zn10/γ-Cu19Zn24, and hierarchical core/shell structures, α-Cu59Zn30@(ZnO)11, Cu35Zn16@(ZnO)49, α-Cu37Zn18@(ZnO)45, Cu@Zinc oxalate, were produced by each synthetic protocol as stoichiometric, copper-rich, and/or zinc-rich nanomaterials. TEM sizes were estimated at 20–40 nm for pure bimetallic particles and at 45–70 nm for hierarchical core/shell structures. Crystallite sizes for the bimetallic nanocrystals were found ca. 30–45 nm, while in the case of the core-shell structures, smaller values around 15–20 nm were calculated for the ZnO shells. Oxidation and/or fragmentation of TrEG was unveiled and attributed to the different fabrication routes and formation mechanisms. All NPs were hydrophilic with 20–30% w/w of polyol coating, non-ionic colloidal stabilization (−5 mV < ζ-potential < −13 mV) and relatively small hydrodynamic sizes (<250 nm). The polyol toolbox proved effective in tailoring the structure and composition of hydrophilic brass NPs while keeping the crystallite and hydrodynamic sizes fixed
    • …
    corecore